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Abstract 

MODELING AND SIMULATION OF A STEWART PLATFORM 

TYPE PARALLEL STRUCI'URE ROBOT 

Gee Kwang Lim, Graduate Research Assistant 
Robert A. Freeman, Assistant Professor of Mechanical Engineering 

Delbert Tesar, Carol Cockrell Curran Chair in Engineering 

The kinematics and dynamics of a Stewart Platform type parallel 
suucture robot(NASA's Dynamic Docking Test System) were modeled using the 
method of kinemauc influence coefficients(l3C) and isomorphic nansformations of 
system dependence from one set of generalized coordinates to another. By 
specifying the end-effector (platform) time trajectory, the required generalized input 
forces which would theoretically yield the desired motion were determined. 

It was found that the relationship between the platform motion and the 
actuators motion was nonlinear. In addition, the conmbution to the total generalized 
forces, required at the actuators, from the acceleration related terms were found to 
be more significant than the velocity related terms. Hence, the curve representing 
the total required actuator force generally resembled the curve for the acceleration 
related force. Another observation revealed that the acceleration related effective 

inertia mamx [ had the tendency to decouple, with the elements on the main 

diagonal of [ ' i d 1  being larger than the off-diagonal elements, while the velocity 

related inema power array [ p '  ddd 1 did not show such tendency. This tendency 

results in the acceleration related force curve of a given actuator resembling the 
accelerarion profile of that particular actuator. Furthermore, the investigation 
indicated that the effective inertia mamx for the legs is more decoupled than that for 
the platform. These observations provide essential information for further research 
to develop an effective control strategy for real-time control of the Dynamic 
Docking Test System. 
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CHAPTER 1 

INTRODUCTION 

Change, rapid change is one of the most common daily occurrences in 
today's world. Everyday there are new products cropping up in the market. It is 
practically impossible for any manufacturer to stay competitive if the manufacturing 
facilities are solely designed for a particular product, requiring months or maybe 
years to convert the facilities for production of a different product. Hence, flexible 
manufacturing is the key word in today's manufacturing environment. The facilities 
must be able to adapt to changes rapidly. Besides being flexible in today's 
manufacturing world, certain manufacturing processes require an almost absolutely 
clean environment, eg., clean room operation. Furthermore, there are certain 
environments which are hazardous to human existence, such as operation in space 
and in nuclear facilities. In order to accomplish these tasks, robots, which are 
computer controlled mechanical devices capable of adapting to a wide range of 
operations, must be utilized. However, there is a limit to what a particular robot can 
or cannot do depending on the physical structure of the robot and how the robot is 
being controlled. There is nothing much that one can do to alter the physical 
structure of a robot, besides getting a different one. But, there are many ways in 
which one can improve the ability of a robot. The most obvious one is by altering 
the control strategy of the robot. For example, there are different ways for a robot 

end-effector to move to a certain location. One of the ways is to move the end- 
effector to the vicinity of the location as fast as possible and subsequently employ 
feedback control to reach the desired location. Another way is by using a more 
accurate model of the robot to predict the input loads required for a given motion of 
the end-effector and implement feedforward control in order to arrive at the desired 
location. The basis of this work then is to obtain a robot's dynamic models for the 
purpose of feedforward control. 

There are a few desirable criteria which are frequently used to 
characterize robot manipulators. They are: 

1 
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(1) Load capacity; 
(2) Speed; 
(3) Precision. 

These three important factors are very often interrelated. Robots with 
high load capacity are usually imprecise and can only move at low speed. Or, 
robots moving at high speed are often imprecise. Hence, there is a trade-off among 
the three criteria. There are three factors that characterize the precision of industrial 
robots. The first factor is repeatability. Repeatability refers to the ability of a robot 
to return to a previously defined location in space. The second factor is absolute 
accuracy, which refers to the ability of a robot to reach a point in space defined by 
the controller. The last factor is resolution. It gives the smallest movement the end- 
effector can achieve. 

The main concern in this work is the problem of load capacity. The 
robots that are of interest here must be able to carry extremely high loads, maybe up 
to a few thousand kilograms. With this degree of load capacity, the robots 
themselves must be relatively rigid and heavy. As a result of the large mass in the 
robot structure, dynamic effects become very significant in the robot motions, 
although the robot maybe moving at a re1a:ively low speed. There are basically two 
different classes of robots that are in use today. These are "serial" robot 
manipulators and "fully parallel" robot manipulators. Although, there can be a mix 

of the two classes, for example, the hybrid manipulator systems discussed in Sklar 
and Tesar [36], the focus in this work will be on serial and fully parallel 
manipulators. 

Theoretically, serial robots can be designed to carry high load if 
necessary. Practically, it is almost impossible to design serial robots that can carry 
high loads and maintain relatively precise motion. This is due to the fact that errors 
in serial manipulators are additive in nature. A one degree deflection in the first link 
may easily cause a significant error at the end-effector position. On the other hand, 
parallel manipulators are structurally more rigid and the error in each links is non- 
additive. Therefore, parallel manipulators are the best alternative for tasks that 
require high load capacity in a limited workspace. However, parallel manipulators 
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not only are structurally more complex, but they also require a more complicated 
control scheme. The main objective of this work is to develop the necessary 
dynamic models and computer software for future study of the generalized Stewart 
Platform aimed at formulating an effective real-time control strategy. 

This work concentrates on the development of the dynamic mode1 for 
a fully parallel robotic manipulator based on the modeling technique called the 
method of Kinematic Influence Coefficients(K1C). The modeling procedure begins 
with the discussion on serial manipulators and then extends the technique to include 
parallel manipulators by utilizing an isomorphic transformation procedure called the 
transfer of generalized coordinates. 

To provide the readers with a better idea of the discussion that focuses 
on the development of the model for a fully parallel manipulator, Chapter 2 begins 
with an introduction on how the concept of parallel mechanisms was first 
envisioned by Mr. D. Stewart [37] and the basic design concept for this class of 
mechanism, subsequently known as Stewart Platforms. Also included is the 
application employing this class of mechanism by the National Aeronautics and 
Space Administration(NASA) for the development of the Dynamic Docking Test 
System (Gates and Graves 1181, Owen and Williams [33], Strassner ([38], [39], 
[40])). In addition, a brief discussion on the different approaches adopted by 
researchers to model Stewart Platform type mechanisms is meant to give the readers 
an overview of the problems faced when using this class of mechanism. 

Chapter 3 introduces the fundamental modeling approach employed in 

this work. The approach, called the method of Kinematic Influence Coefficients, is 
based on the separation of time dependent functions and position(or configuration) 
dependent functions. This chapter develops the tools necessary for deriving the 
kinematic and dynamic models for serial manipulators. Then, using the tools just 
developed, the model for serial manipulators is formulated. 

Chapter 4 gives a detailed description of the isomorphic 
transformation technique which greatly enhances the modeling capabilities of the 
method of Kinematic Influence Coefficients. A general procedure is developed to 
transfer the kinematic and dynamic models referenced to any set of generalized 
coordinates to any other desired set of generalized coordinates via the transfer of 
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generalized coordinates. The discussion begins with serial manipulators and then is 
extended to include multi-loop parallel mechanisms. 

Chapter 5 focuses on the application of the modeling technique 
developed in the previous chapters to NASA's Dynamic Docking Test System, 
which is a variation of the generalized Stewart Platform. This chapter gives a 
detailed description of the derivation of the desired dynamic model, which can be 
used to implement feedforward control for the Dynamic Docking Test System. The 
development includes deriving the directly obtainable initial models for each leg 
referenced to their respective joint parameters and the platform model rzferenced to 
the platform coordinates. Also included is the transfer of the joint-based model for 
e x h  leg to the intermediate common set of platform coordinates. And, finally, the 
transfer of the model from the platform coordinate set to the desired input 
coordinate set is discussed. 

In Chapter 6, the results of various computer simulations using the 
model developed in Chapter 5 are presented. Four different motion specifications 
and two platform eajectories are simulated. The motion specifications used are: 

(a) Class p=2, constant acceleration; 
(b) Class p=3,3-4-5 polynomial; 
(c) Class p=4,4-5-6-7 polynomial; 
(d) Class p=4,3'd derivative trapezoidal. 

From these simulations, the conmbution to the overall actuator forces arising from 
the velocity-related term and the acceleration-related term are studied. Furthermore, 
the elements in the effective inertia matrix and inertia power array are also 
investigated. The magnitude of these elements in general and the relative magnitude 
of the main diagonal elements compared to the off-diagonal elements, are essential 
for studying the feasibility of real-time feedforward control. 



CHAPTER 2 

BACKGROUND 

2.1 Stewart Platform 

In the search for a suitable means for simulating flight 
conditions for the safe training of helicopter pilots, the design 
of a mechanism has been established having all the freedoms 
of motion within the design limitations of amplitude and 
capable of being controlled in all of them simultaneously. 

In the opening paragraph, as quoted above, from the 1965 publication 
by Mr. D. Stewart [37], he saw the immediate need for a mechanism suitable for 
pilot training. Serial manipulators having six degrees-of-freedom(D0F) are 
potential candidates for the job. However, the mechanism must be able to carry a 
large load and change direction, speed and acceleration within a short period of time 
to simulate flight conditions. These requirements present a serious problem for any 
serial manipulator. It was a known fact at that time, and today too, that serial 
manipulators were very limited in load capacity. Thus, using a serial manipulator 
alone to do rhe job is highly unlikely, so a different kind of mechanical structure is 
necessary. Mr. Stewart envisioned mechanisms which had the ability to carry a 
large load aqd still satisfy the above mentioned motion specifications could also be 

used in the following ways: 

(a) To simulate a space vehicle 
(b) To simulate a stationary platform on a moving ship 
(c) As a human control mechanism (man-machine interface) 
(d) As a machine tool 
(e) As an automatic assembly or transfer machine. 

5 
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2.1.1 Basic Design Concept 

The mechanism which Mr. Stewart designed, called the Stewart 
Platform, consists of a moving platform supported by three legs through a ball joint 
at each of the connections. The other end of each leg is connected to ground 
through a two-axis revolute joint as shown in Fig. 2-1. The connections at the ball 
joints are free to rotate as the platform moves. All the legs are designed using 
prismatic joints allowing control of the individual leg lengths. One axis of the two- 
axis revolute joint is also controlled by an actuator. These inputs are referred to as 
the controlled actions in Fig. 2- 1. This arrangement gives the platform six DOF 
with two DOF essentially controlled by each leg. The platform is also designed so 
that when the three legs are in their mean positions, each of the legs is contained in 

a tangential plane of a circle that passes through the three points of the platform as 
shown in Fig. 2-2. 

With this basic design concept, a wide range of applications 
previously limited by the speed and load capacity of serial manipulators will soon 
surface. For example, applications that require high load capacities will now be 
possible due to the parallel nature of the mechanism. Unlike serial manipulators 
where deflection from each link is additive in nature, any deflection under heavy 
load in a parallel manipulator is non-additive, meaning the total deflection at the 
end-effector is not the sum of each of the individual link. Another useful application 
is in the area where high precision and accuracy are critical within a limited 
operating range, eg. micromanipulator for use in micro-surgery. In this kind of 
operation, very small motions are required from the manipulator but with high 
precision, the parallel structure potentially gives the mechanism a faster and more 
precise motion than its serial counterpart. 

2- 1.2 Confrol of the Mechanism 

As technology advances, system control becomes a vital part of 
everyday life. Take the very basic household temperature control. Without the use 
of a thermostat, one will have to perform the boring routine of switching on and off 
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Fig. 2-1 General Arrangement of the Stewart Platform* 

*.Adapted from Stewart [37] 
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the air conditioner(or heater) to keep the temperature at a desired level. Opening and 
closing of the elevator door is another example of control. When someone enters 
the elevator as the door is closing, the door will stop and start to open again. These 
examples show how important control is in one's daily life, although one might not 
realize it. Control systems not only relieve humans from some easy tasks, but they 
can also facilitate the operation of a highly complex problem like sending a 
spacecraft out to an unknown galaxy. For any mechanism be of any use, the ability 
to control it effectively is essential. A mechanism will just be a show piece with no 
practical purpose if there is no way of controlling it. Hence, this section discusses 
some of the techniques suggested by Mr. Stewart for the control of the platform 
mechanism. 

2- 1.2.1 Linear Hydraulic Actuator 

One of the methods that Mr. Stewart suggested in controlling the 
mechanism was by using two hydraulic jacks for each leg. One of the jacks is to 
control the length of the leg, while the other jack is to control the angle of the first 

parallel axes at the base of the two jacks (two-axis joint). The common axis is not 
controlled by the leg allowing the plane containing the individual leg to rotate freely 
about that axis. This design gives the platform a three-axis motion about the ball 
joint. When the three legs are connected together at the platform, the platform 
direction, which cannot be controlled by a single leg, can be thought of as being 

controlled by the other two 2 DOF legs. Thus, the platform has a total of six DOF 
(three translational and three rotational motions). 

jack as shown in Fig. 2-3. Also depicted in the figure is a common axis and two 

2- 1.2.2 Articulated Levers 

Another proposed structure uses articulated levers as shown in Fig. 
2-4. This system of controlling the platform differs from the linear actuators 
discussed in the previous section. Instead of controlling one length and an angle, 
the ball joint location within the plane of each leg, and hence, the platform is 
controlled by two angles (a and P). One advantage for controlling two angles over 
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Fig. 2-3 Articulated Levers* 

*Adapted from Stewm [37] 
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one length and an angle, as discussed in section 2- 1.2.1 , is that larger workspace 
can be attained. By replacing the jack in Fig. 2-3 with an articulated leg, and 
operating the jack part way along the outer limb (Fig. 2-4), the amplitude of the leg 
extension can be increased as compared with the linear controlled actuator. 

2.2 Pnamic  Dockine Test Svstem cDDTS) 

Utilizing the basic concept of the Stewart Platform, the National 
Aeronautics and Space Administration's Lyndon B. Johnson Space Center built a 
full-scale advanced docking system in the early 1970's (Gates and Graves [ 181, 
Owen and Williams [33], Strassner ([38], [39], [40])). The DDTS is a large 
motion, real-time docking test simulator designed to physically accommodate the 
docking hardware of two spacecrafts. The physical configuration of the simulator is 
shown in Fig. 2-5. The simulator consists of six linear hydraulic actuators which 
support and move an active table (moving platform) on which the passive docking 
hardware is mounted during a simulation. The overhead support structure is 
supported by a strongback at one end and two vertical braced columns at the other 
as shown in Fig. 2-6. This stationary portion of the simulator supports the active 
docking hardware system, docking hardware adapter and load cell system. 

During a docking test, the lower portion of the simulator manipulates 
the passive docking hardware of one spacecraft to the active docking hardware of 
the other spacecraft, which is attached to the stationary overhead structure. Before 
the two portions of the simulator (ie., active and passive) come into contact, the 
active table is driven by the six hydraulic actuators in a preprogramed motion 
trajectory relative to the stationary active docking hardware. On contact, the loads 
sensed by the load cell system triggers the closed-loop portion of the simulation. 
These loads are then used as inputs to spacecraft equations of motion to predict the 
response of the two spacecrafts on the computer. Subsequently, real-time relative 
motion of the two spacecrafts is determined and then transformed into actuator 
motion commands. The simulation is terminated when the closed-loop load and the 
spacecraft dynamics go to zero. 
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Ignoring the specific structural differences between the Stewart 
Platform of Fig. 2-1 and the DDTS of Fig. 2-5, it is apparent that the two 
mechanisms resemble each other. Both the mechanisms have a moving platform 
that is supported by some mechanical linkages (or legs) and they are parallel in 
nature. By controlling the orientation and/or length of the legs, the motion of the 
platform is then defined. The only difference between the two mechanisms is that 
the platform in Fig. 2-1 has three legs while the platform in Fig. 2-5 has six legs. 
However, both the mechanisms still provide control of the six DOF of the platform. 
Two DOF are controlled by each of the leg in the arrangement in Fig. 2- 1,  but only 
one DOF is controlled by each of the leg in the design shown in Fig. 2-5. 

The initial use of the DDTS was for the Apollo/Soyuz Test Project, 
which was an international mission between the United States and the USSR. The 
project involved the docking of Apollo and Soyuz docking modules in the space 
orbit. The high load capacity requirement from the two docking modules 
discouraged the use of serial test mechanism due to the additive nature of the 
deflection from each of the serial linkages. Future applications of the DDTS will be 
for the space shuttle and the space station. 

2.3 Survev of Related Work bv Ot her Researchers 

In the last two decades, science and technology have advanced 
tremendously. Computer technology for instance, has reached a point where 
products produced just one or two years ago are considered outdated. With this in 

mind, one would expect the same impact on robotic technology since the computer 
is the brain of the robot. Unfortunately, this is not true. Only recently has industry 
seen the potential for robots in the manufacturing environment. This delay in 
realizing the need for robotics technology created a gap between what the brain of a 
robot is capable of doing and what the robot is physically able to do. Although there 
is a lot of robotics research ongoing, most of the emphasis is in the area of serial 
manipulators, from which most industrial robots are derived. A very limited amount 
of effort is put into the development of parallel robotic mechanisms. A survey of the 
literature will illustrates this trend in the engineering research community. After an 
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extensive survey, only the following publications are available: Callan [4], Cox [6], 
Cwiakala [8], Do and Yang [ 9 ] ,  Fichter [12], Freeman and Tesar ([14], [15]), 
Hudgens [21], Hunt [22], Marco [28], Mayer and Wood [30], Mohamed and 
Duffy [31]. This limited effort maybe due to the complexity of the geometry as 
compared to serial linkages or, it maybe because not many researchers have yet 
realized the potential of parallel mechanisms. 

In the following, a few of the recent publications from researchers 
across the country covering the different aspects of parallel mechanisms will be 
discussed. The first report investigates the dynamics of the platform type 
mechanism using the Newton-Euler formulation. Following that is a report that 
investigates the workspace of the mechanism. The third report deals with the 
general theory and practical construction of the mechanism. While the last 
investigation is to utilize the mechanism as a micromanipulator for delicate force 
control, error compensation and fine manipulation. 

In a publication presented by Do and Yang [9 ] ,  Newtonian mechanics 
was used to calculate the actuating forces for the actuators of a Stew& Platform 
shown in Fig. 2-7. It is found that the dynamics of the mechanism is governed by 
thirty-six simultaneous equations. Instead of solving the entire set of simultaneous 
equations, which would be computationally demanding, it  is also found that the 
thirty-six equations can be arranged to form systems of six linear equations. The 
approach taken in the reponed research is very "conventional". By conventional it is 
meant that the method is widely used in the engineering community. As a result, it 
is easily understood by most researchers. However, this approach lacks generality 
in the sense that there is no general rule as to how to form the six desired equations. 
A complete analysis of the mechanism may be necessary to obtain a similar set of 
six equations if a slightly different model is used. 

Another publication presented by Cwiakala [8], analyzed the 
kinematics of the platform. Using only the kinematic model, the workspace of the 
Stewart Platform was studied. By utilizing the special symmetry of the platform, 
the investigator found that the problem of determining a representative workspace 
cross-section could be reduced to a planar problem. Also addressed in this work is 
the development of an efficient approach to generate the workspace of the platform. 
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Fig. 2-7 Kinematic Model of the Stewart Platform* 

*Adapted from Do and Yang [9] 



It is found that the workspace cross-section of the Stewart Platform under 
consideration is nonsymmetric. In addition, the nonsymmetry and the volume 
increase as the ratio of the lower radius (base) to upper radius (platform) increases. 
This implies that by increasing the radius of the platform, the workspace can be 
increased. 

A different approach was taken by Fichter [12]. Screw theory was 
used to determine the dynamics of the Stewart Platform. Unfortunately, the author 
of this work is not familiar enough with the technique of screw theory to contribute 
any useful comment. However, one of the findings which has great interest to this 
author is the determination of singular positions for the mechanism. It is noted that 
instead of losing one or more degrees of freedom at the singular positions, as one 
does with serial manipulators, parallel manipulators gain one or more degrees of 
freedom. By this it means that the control of one or more degrees of freedom of the 
platform is lost. The singular positions of the Stewart PlaLform similar to the one 
shown in Fig. 2-5 or Fig. 2-7 occur when the six lines of action of the forces of the 
legs are linearly dependent. This condition can also he found by calculating the 
determinant of the matrix of the Plucker coordinates. At singular positions, the 
determinant of the matrix becomes zero. For detailed results of this investigation the 
readers are referred to the publication. In addition, Mohamed and Duffy [3 13 also 
investigated the fust-order properties via screw theory. 

Applying the concept of the Stewart Platform, researchers have come 
up with many applications for parallel robotic mechanisms. One of the very 
practical uses is as a micromanipulator. It can be used alone for very small motion 
and high precision operation or it can be combined with a serial manipulator to take 
advantage of the positive aspects of both the parallel and serial manipulators. By 
positive aspects the author means the relatively high speed and precision of the 
parallel structure, and large workspace volume together with the relatively high 
dexterity of the serial structure. Sklar and Tesar [36] investigated the kinematics and 
dynamics of hybrid serial/parallel manipulator structurts. 

Hudgens [2 11 investigated a fully-parallel six DOF micromanipulator 
in his Master's Thesis. The micromanipulator investigated there, shown in Fig. 
2-8, is a variation of the generalized Stewart Platform. Instead of varying the link 

1 8  
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Fig. 2-8 Kinematic Representation of the 
Micromanipulator Mechanism* 

*Adapted from Hudgens [21] 



2 0  

length of the six legs to control the platform, it is controlled by varying the position 
of the lower spherical joints in a circular arc within the base plane. The rotary input 
in Fig. 2-8 controls the movement of the lower spherical joint via the base link. The 
motivations for using the four-bar linkage at the active input to control the platform 
instead of the link length are the following: 

(a) only a small workspace is necessary in this particular application. 
(b) this input arrangement provides high resolution at the platform. By 

high resolution it means large input motion to small platform 
motion. 

(c) the fixed link provides higher load capacity compared to prismatic 
link. 

One simplification made in his research is to replace the lower 
spherical joints by two DOF hooke (universal) joints, since the spin of each leg 
about its own axis does not contribute to or affect the inpuVoutput relationship of 
the mechanism. This simplification is shown in Fig. 2-9 for one branch. The 
modeling technique employed by MI. Hudgens is very similar to the method used 
in this work. However, numerous modifications and variations are made and will 
be highlighted as they appear in the following chapters of this work. 

This chapter is only intended to provide a quick and brief overview of 
the past and present works in the area of parallel robotic mechanisms. It in no way 
represents all the research and advances in this area. However, deriving from the 
limited resources and knowledge, the author strongly feels that a lot of research is 
needed in order to fully understand and exploit the potential of parallel mechanisms. 
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CHAPTER 3 

KINEMATIC AND DYNAMIC MODELING USING 
KINEMATIC INFLUENCE COEFFICIENTS 

3- 1 Overview of The Method of Kinematic Influence Coe fficienG 

Section 2-3 reviewed some of the techniques employed by a few 
researchers for the kinematic and dynamic modeling of six DOF parallel robotic 
mechanisms. This chapter will discuss a technique not very widely used in the 
engineering community but which has been used with great success by a group of 
researchers at the University of Florida(now at The University of Texas at Austin) 
for the past few decades. The technique has been termed the method of Kinematic 

Influence Coefficients(K1C). The basis of this work stems from the method of KIC 
continually developed over the years by researchers including Tesar, Benedict, 
Thomas and Freeman. The present chapter will concentrate on the discussion of 
serial manipulator modeling using KIC. In the next chapter, discussion will focus 
on how to apply the model of a serial manipulator to a parallel manipulator. This 
ability is largely a result of the generality and versatility of the KIC approach. 

The method of KIC is based on the separation of time dependent 
functions and position(or configuration) dependent functions. Throughout the entire 
process of obtaining the kinematic and dynamic models, the formulation will strictly 
adhere to this fundamental concept, keeping the two terms separated. Following 
this concept, a lot of research has been done and well documented in the literature. 
Some of the more significant findings are : Benedict and Tesar ([l], [2], [3]), 
Thomas and Tesar ([42], [43]), Freeman and Tesar (1131, [14], 11.51). The 
technique was initially developed by Benedict and Tesar to analyze planar 
mechanism. In 1982 Thomas and Tesar took the approach one step further by 
developing procedures for the analysis of a general serial manipulator. Freeman and 
Tesar through the years 1982 to 1986 extended the applicability of the approach by 
developing the technique of generalized coordinate transformation, which will be 

2 2  
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discussed in the next chapter. This greatly enhances the potential power of KIC in 
dealing with a larger and more general class of mechanism and forms the analytic 
basis of this work. 

To aid readers who are unfamiliar with the method of KIC and the 
notational scheme employed in this work, it is essential to introduce the readers to 
the notation used in the present work. The notational scheme adapted here was 
developed by Freeman and Tesar [14]. Although part of the notation may appear 
redundant at the stage when dealing with a single set of independent generalized 
coordinates, it will be shown to graphically enhance the manipulation process for 
the transfer of generalized coordinates, which will be discussed in the following 
chapter. The basic formulation of this scheme involves a square(or block) 
arrangement with the central block surrounded by both pre- and post- superscripts 
and subscripts at the four comers as illustrated in Table 3- 1. The square is divided 
into two portions with the top half reserved for dependent system parameters and 
the bottom half reserved for independent system parameters. The center of the 
square is reserved for a symbol representing a system parameter (e.g., a set of 
generalized position parameters &)), a physical quantity (e.g., a generalized force 
(T)), or a mathematical operation (e.g., first-order partial geometric derivative (G)). 
Post super- and sub-scripts denote which system parameter is involved with the 
center symbol. Pre super- and sub-scripts give any additional information that 
might be helpful to describe the system parameter. Hence, at times the pre scripts 
maybe missing from the square. Matrices and higher dimensional arrays are 
denoted by square brackets(ie. [ 1) enclosing the symbol along with the super- and 
sub-scripts. Although the notational scheme may appear complex and confusing to 
first time readers, when one becomes familiar with its usage, the advantages of this 
scheme will soon surface. One will greatly appreciate the graphically descriptive 
information provided in the square when dealing with the Eansference of system 
dependence from one set of generalized coordinates to another. 

Also, additional notation is used when dealing with higher 
dimensional arrays and their subsets. When four dimensional arrays are used in this 
work, the first index represents the leg number associated. Unfortunately, the first 
index of a three dimensional arrays may represent the leg number or plane 
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[ Modifier ] [ Parameter(s) ] 

I 

c 
W 

1 [ Parameter( s) 3 

1. u=f(cp):  

1 2  
Dependent: g =  ( u ,  u ,  ..., 

/ 1 [PI 

[ I  [ I  
[TI 

[ I  [ m l  

T 
Independent : = ( (ply 'Pa . - - CP,) 

Table 3-1 Notational Scheme 
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[ I  

a( 1 
37 where G i 

[ I  

[ I  

a2(  1 a<>a<> where H = 

j - 1  

j -  1 

Table 3-1 Notational Scheme(cont.) 



associated. However, only in the simulation software are four dimensional arrays 
used with the first index indicating the leg number. Otherwise, throughout the 
derivation, only up to three dimensional arrays are used with the first index 
indicating the plane number. The last two indices represent the row and column, 
respectively, of a matrix or the matrix of one of the planes. In other words, the 
indices for four dimensional arrays, from left to right denote: leg; plane; row; 
column. For three dimensional arrays, the indices denote: leglplane; row; column. 
Table 3-2 gives an example of the notation used. The subset of an array is also 
indicated by its indices. A missing index implies that all the components in that 
dimension are present in the subset of the amy.  For example, an array with indices 
like this: k; ;m;n, represents the m* row and n* column of all the planes for the kth 
leg. This is also illustrated in Table 3-2. 

The next two sections will focus on the development of a general 
approach for the kinematic and dynamic modeling of serial manipulators, based 
mainly on Freeman and Tesar [ 141 and Hudgens and Tesar [21]. Due to the fact that 
all parallel mechanisms can be viewed and modeled as a combination of serial 
mechanisms, it is essential that the readers fully understand the derivation that will 
be discussed in the following sections. Besides, almost all of today's industrial 
robots are serial in nature, hence, the method discussed here can be used to analyze 
almost any robot in use and to aid in the design of robots. 

3-2 General Approach to Develop the Kinematic Model of Serial 
Manipul a ton 

Consider a set of M-dimensional time dependent motion parameters, 
eg., the vector (u), written as 

2 6  

where the superscripts( 1,2,3, ..., M) denote which of the system parameters are 
involved in the description of the kinematic state. The superscript T denotes the 
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[AI;;; = 

I 

[::: :::I 
Link 1 

[A]1;2;; - - ‘ I 2 ]  ; [A]1;2;1; = [ c l l ]  
c21 c22 c21 

Example of the A array with indices like this : 2; ; 1; 1, represent 

For three dimensional a m y  A, 

b 2 2  

Table 3-2 Indicia1 Notation for Higher Dimensional 
Array 
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transpose of the row matrix. It is also assumed that u is a function of an N- 

dimensional set of generalized coordinates g, 

where the subscripts denote which of the generalized coordinates are involved. As a 
result, the system can be expressed parametrically as 

m r n  
u = u  (9) ; m =  1,2,3 ,..., M 

and 
cp,= cp,(t) ; n = 1,2,3 ,..., N . 

Using the above notation, the first order time derivative of U is 

an 
392 

=-9 

(3-3) 

(3-4) 

(3-5) 

By defining the fxst order kinematic influence coefficients, which will be referred 
to as the "G-function" throughout this work (as opposed to the more common use 
of the term Jacobian), as 

equation 3-5 can be expressed as 

where LG:l is a M  by N matrix and4 is a N by 1 vector. 
The second order time derivative of u is a direct differentiation of u , 

which is expressed as 
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or 

Applying the chain rule to the time derivative of gives 

=”( $) 
292 

Substituting equation 3-5 into equation 3-9 and regrouping gives 

(3-9) 

(3- 10) 

By definition, the second-order kinematic influence coefficient is the partial 

derivative of LG 1 with respect to 9, which will be denoted throughout this work as 

(3- 1 1) 

or as the “H-function”. The H-function is a M by N by N array. Substituting 
equation 3-1 1 into equation 3-10 and arranging for dimensional compatibility with 
equation 3-8 gives 

(3-12) 

Substituting equations 3-6 and 3-12 into equation 3-8 gives 
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(3-13) 

Recalling equations 3-7 and 3- 13 and the method of derivation from equation 3-5 to 
3-13, as far as possible, the expressions follow the fundamental principle of 
separating the position(or geometry) dependent terms from the time dependent 
terms. Also notice that both the G- and H-functions are purely position dependent. 
Equations 3-7 and 3-13 are the two basic formulations which will be used in this 
entire work for the velocity and acceleration terms. Freeman and Tesar [ 143 carried 
the derivation further to include the third order time derivative of J!, which is the 
jerk. However, this will not be discussed in the present work. 

Before going any further, it is important to explicitly define the 
components that make up the G- and H-functions. Since 

[G:] = - an 
am 

and 

the G-function can be written as 

2 
g1 

(3-6) 

(3- 1 1) 
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rn 

aU' aU' aU 

(3- 14) 

u l  
where 
m = 1,2 ,... ,h4 and n = 1,2 ,... ,N. The H-function can be written as 

is defined as the mth row and nth column of the M by N [ G q l  matrix and 

... a 2 u i  a Z u i  azu' 

(3- 15) 

i 

where i = 1,2,...,M. Note, h j  is defined as the component of the i* plane, jth row 

and kth column of the M by N by N, [HU 9~ I may.  
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Until this point, none of the derivations pertain to any particular 
manipulator. However, they provide the necessary tools for the development of the 
next few sections and the chapters that follow. 

3-2.1 Kinematics of Serial Manipulators 

The kinematic analyses of serial manipulators has been treated 
extensively by researchers including Colson and Perreira [5], Craig [7], Freeman 
and Tesar ([ 131, [ 141, [ 15]), Fu, Gonzalez and Lee [ 171, Lee [24], Lee and Ziegler 
[26], Paul [34], Paul, Shimano and Mayer [35], Takano, Yashima and Yada [41], 
Thomas and Tesar ([42], [43]), and many others. This section is designed 
specifically for the benefit of those readers who are unfamiliar with the previous 
mentioned works or for those who are unfamiliar with the notational scheme 
adopted by Thomas and Tesar ([42], [43]) or Freeman and Tesar ([ 131, [ 141, [ 151). 
It is only intended to serve as a brief review of the current topic. 

An N DOF serial manipulator, as the name implies, consists of N 
links and N joints connected together in series(ie., one link after the other). Only 
two of the lower-pair connectors, revolute and prismatic joints, are considered in 
this work due to the fact that any other joint can be treated as a combination of the 
two. A general N DOF serial manipulator is shown in Fig. 3-1, as adapted from 
Freeman and Tesar [ 141. Each rigid link in the serial chain is characterized by four 
independent parameters according to the Denavit-Hartenberg convention. They are 

the link offset( or ), joint angle( 'JJ or e I ) ,  link length( 0.1)) and twist 

angle( ( x ~ ~ + l )  ). A double subscript here denotes a fixed system parameter, whereas, 
a single subscript represents a system variable. Following this scheme, a revolute 

link will have and 'I as the two independent joint parameters. On the other 

hand, s~ and '11 will be the two joint parameters for a prismatic link. The 
coordinate system adopted here sets the base link(or link 01) coincident with the 

fixed axes( x, y, z ), with the first axis of rotation (or translation) $1 defining the 

direction of i . 4 is along the fixed axis Ox when l(or '11) is zero. The pre- 

superscript with a bracket in z represents the local X and 2 axes. E is 

. . .  
12 

0) (1 1 1 x and 
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\\\ #. 

s ;z - 
Fig. 3-1 Kinematic Representation of the 

Serial Manipulator* 

*Adapted tiom Freeman and T e w  [ 141 



3 4  

the vector pointing from the origin of the fixed reference frame to the origin of the 
jth link frame. This vector can be expressed as a sum of all the preceding vectors 2 
and S as 

(3-16) 

Following this convention for setting up the local link frames, the link parameters 
can be defined as: 

J(J+l) 
(a) Link offset or s~ = the distance from a to a measured 

1 
dong S direction; 

0 - O J  JW)  
(b) Joint angle '11 or e J = the angle between a and a 

1 

J J+1 
measured about S axis; 

(c) Link length (I+') = the distance from to 5 measured along 

(d) Twist angle a ~ l ~ + l )  = the angle between 5 and S 

+l) &=tion; 
I J*1 

measured about 
a' (1 

3-2.1.1 First-order Kinematics 

General rigid body motion can be conveniently expressed in terms of a 

translational velocity component and a rotational velocity component. These two 
velocities can be separated by treating the body as a point to obtain the translational 
term, and as an object rotating about that point to get the rotational term. Serial 
linkages are made up of rigid bodies connected together sequentially. In order to 
determine the velocity at any point in the chain, one needs to fEst find the angular 
velocity of the link frame containing the point and then the velocity of the origin of 
that frame. 
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Rorarional. By the angular velocity addition theorem, the angular 
velocity of link jk in Fig. 3-1 can be expressed as the sum of all the relative angular 
velocities of the links preceding link jk, ie. : 

(3-17) 

* m  

where e m is the relative angular velocity between link (m- l)m and link m(m+ 1) 

for a revolute joint and equals to zero for a prismatic joint, since e m  is zero. 
Following the technique used to derive equation 3-7, equation 3- 17 is separated into 

the geometric tern S and the time dependent term e m , and expressed as 
m 

(3- 18) 

Comparing equations 3-17 and 3-18, it can be shown (Freeman and Tesar [14]) 

that, 

(3-19) 

Recall in Section 3-1 that [GJ!; m represents all the rows in column m of matrix - -  
m IG',Y, which is the unit vector 2 of joint axis m expressed in terms of the fixed . . .  

Cartesian reference frame ( X ,  Y, Z>, ie. : 

T 
am=( Oxm, 'Y", i") (3-20) 

There is no angular velocity contribution from prismatic joints, therefore, the zero 
vector for all other cases, including j > m. 
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Transfarionaf. The translational velocity of a point P fixed in link jk 
can be derived by taking the time derivative of the position vector of point P in the 
fixed reference frame. The position vector of P can be written as : 

[ J] (jk + T  (3-2 1) 

where E' is as defined in equation 3- 16, [T'l is the rotation matrix relating link 
frame j to the fixed coordinate frame. The pre-superscript with a bracket represents 

a locally referenced vector or component, therefore, ('!l? is the position vector of P. 
with respect to the origin of frame j and expressed in the local frame coordinates. 
Taking the time derivative of equation 3-2 1 gives 

(3-22) 

It can be shown (Freeman and Tesar [ 141) that simplifying equation 3-22 gives a 
more compact form as 

m-1 (3-23) 

I, I, 

where denotes a vector cross product. Equation 3-23 gives the necessary form 
to separate the position dependent terms from the time dependent terms. As a result, 
equation 3-23 can be expressed in the desired form 

where 

(3-24) 
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Smx ( 'E - gm), m I j ; cpm= 6, revolute joint 

, m I j ; cpm= s, prismatic joint 

, m > j  

m 

(3-25) 

Equation 3-25 simply states that the G-function of joint m is the vector cross 
product of its unit vector along the axis of rotation with the vector pointing from the 
origin of the m* link frame to the point P, if link m is revolute. In the case of a 
prismatic joint, the G-function is simply the unit vector along the axis of motion. 
Otherwise, it is the zero vector (ie., m > j ). 

3-2.1.2 Second-order Kinematics 

The reader is referred to the development of equation 3-13 in the 
beginning of section 3-2, since the derivation of the second-order kinematics here is 
based heavily on that section. 

Rorarional. The angular acceleration of a rigid body can be obtained by 
simply differeiltiating equation 3-18 with respect to time. This yields 

Recalling equation 3- 12 

-[.:I d = iT[H:,] 
dt 

The second term in bracket in equation 3-26 can then be expressed as 

(3-26) 

(3- 12) 

(3-27) 

Substituting equation 3-27 into equation 3-26 gives 
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j k  = [ G j ~ l  *- ’[ j k ]  

(3-28) cp g+le Hcpvle 

where [.:q1 is a 3 by M by M array with its i* plane corresponding to the i* row 
j k  

of the vector . 
Recall equation 3-19 for the rotational G-function. Taking the time 

derivative of equation 3-19 results in 

m 
. S , m I j ; ‘pm= 0,  for revolute joint --[Gr];,= d ( 

dt Q , otherwise 
(3-29) 

Since 

using the relationship 

the non-symmetric rotational second-order influence coefficients are 

(3-30) 

(3-3 1) 

[ H ~ J  
1 vector running into the three planes of 

planes. The i* row in [H”ol 

is the vector component of the array LH:J, which can be viewed as a 3 by 

9 9  at m* row and n* column of the [H”] 

corresponds to the i* plane in [H:d. 
Tramlarional. The derivation for the translational acceleration of a 

rigid body is more involved than the angular acceleration described above. This 
author will not give the detailed derivation but rather just the final result. Readers 
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who are interested in the derivation are urged to refer to Freeman and Tesar [14]. 
However, the general procedure is still similar to that of the angular acceleration. 
By taking the time derivative of equation 3-24, the result is 

j.. 
E = [  'G:]G+( $[ J G : ] ) ~  

Using the general result of equation 3-27 gives 

where 

(3-33) 

(3-34) 

m s x [ i x ( ~ _ - ~ . ) ] ,  m c n s j  ; R R  

ix[;x(JE-Em)], n c m l j  ; R R  

- s x s  , n < m I j  ; P R  

s x s  , m c n l j  ; R P  

Q , m c n l j  ; P R  

Q , n c m I j  ; R P  

Q , m o r n > j ; a l l  

a m  

m u  

(3-35) 

[ JH:J;m;n= 

The first capital letter at the end of each row represents the joint type of m, the 
second one represents the joint type of n; R stands for revolute joint and P stands 
for prismatic joint. Notice that the form of equation 3-35 gives a symmetric matrix 

for each plane of bP1 v q ,  which is different from the non-symmetric planes of the 

second-order rotational influence coefficients. The results for all the G- and H- 
functions are listed in Table 3-3 and Table 3-4, respectively. 

! 
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Joint TvDe 
Symbol m n Restriction Value 

Rotational 

[ ~ ; ] ; m  

m - S 

Q 
Q 

Translational R 

[ j G : ] ; m  - P 

- R,P 

m l j  

m l j  

m >  j 

- S m X  ( Jp - E-) 
m 

- S 

Q 

Table 3-3 First-order Kinematic Influence Coefficients for  
Serial Manipulators 
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Joint T V D ~  
Symbol m n Restriction Value 

Rotational R R m < n l j  

R R m < n  or n > j  

P o r R  P All m, n 

m u  - s x s  

n 
n 

Translational R R m < n I j  

[ "iQ];m;. R R n < m I j  

P R n c m I j  

R P m < n l j  

P R m < n I j  

R P n < m < j  

m o r n  > j  All cases 

Q 
Q 

n 

Table 3-4 Second-order Kinematic Influenc 
Coefficient for Serial Manipulators 
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3-2.1.3 Forward Kinematics 

After determining the first- and second-order kinematic influence 
coefficients of a serial manipulator, we are ready to investigate the forward 
kinematics (ie., position, velocity and acceleration) of serial manipulators. In a 
practical situation, rather than specrfying the state of the joints, often called the joint 
space, usually the kinematic state of the end-effector, which is often called the 
Cartesian space, is specified. It is frequently trivial to solve for the forward 
kinematic state of any manipulator. Given the kinematic state of each of the joints, 
the position and orientation of the end-effector can easily be detennined by using 
any of the fundamental geomehc or algebraic approaches (Craig [7], Fu, Gonzalez 
and Lee [17], Paul [34]). This will not be discussed in this work. However, in 
order to aid those readers who are unfamiliar with the use of the G- and H- 
functions, the forward kinematic analysis for velocity and acceleration will be 
briefly reviewed here serving as a prelude to the reverse kinematics that will be 
discussed in the next section. 

Consider a general six DOF serial manipulator with a point P fixed in 
the last link (or the end-effector). Knowing the kinematic state of each of the joints, 

represented by the symbol 542 as the generalized joint inputs, the kinematic state of 

the end-effector, represented by 1, can then be determined. 2 is a 6 by 1 vector for 
a six DOF manipulator, and is always a 6 by 1 vector. The resulting forward 
kinematic model is 

i = [ G l ] b  

and 

(3-36) 

(3-37) 

where the first three rows of 
rows are the angular terms. The combined 6 by 6 G-function is then given by 

and are the translational terms, and the last three 
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(3-38) 

where the top consists of the 3 by 6 translational G-functions and the bottom 
contains the 3 by 6 rotational G-functions. The H-function is formed as 

and 
(3-39) 

(3-40) 

The combination of equations 3-39 and 3-40 gives a 6 by 6 by 6 m a y  with its first 
three planes(equation 3-39) corresponding to the first three rows of 11 for the 

.. 
6 .. 

translational acceleration E , and the last three planes(equation 3-40) corresponding 
67 .. 

to the last three rows ofu for the angular acceleration LX I 

3 - 2.1 .4 Reverse Kinematics 

Having been introduced to the application of the G- and H-functions 
for the forward kinematics, this section will discuss the more operationally difficult 
problem of reverse kinematics. This involves much more complex solutions and 
physical considerations. Before solving the reverse kinematics problem, it will be 
beneficial to discuss the complexity of the soiution(s). 

There are three main concerns with the reverse kinematic solutions 
(Craig [7]). The first concern is the existence of solutions. Do the solutions exit? 
This raises the question of manipulator workspace. There are two kinds of 
manipulator workspaces. One is called the dextrous workspace, which is defined as 
the volume of space within which the end-effector can reach in all directions. The 
other is called the reachable workspace, which is defined as the volume of space 
that the robot can reach in at least one direction. Hence, the specification of the end- 
effector must be within the possible workspace of the robot. 

The second concern is the problem of multiple solutions. Unlike 
forward kinematics which yield a unique solution, reverse kinematics can have 
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more than one solution with the same end-effector specification. This requires the 
selection of one of the possible solutions. The robot controller must be capable of 
making this kind of decision. For example, to go from point A to point B in Fig. 
3-2, the robot has the choice of two configurations, I and I1 . The robot has to 
decide which is the more efficient way to take and if there is an obstacle, which is 
the best way to avoid it. 

Being able to resolve the previous two concerns still does not 
guarantee a satisfactory solution. There is the problem of singularity. If the 
specification for the end-effector puts the manipulator in a singularity configuration, 
the robot must be able to foresee the problem and work out an acceptable alternate 
solution. 

Knowing the problems related to reverse kinematics, the next 
discussion will concentrate on deriving the solution(s). Given the end-effector 

states( u, and ), it is desired to determine the state of all the joints( 9, 9 and ), 

where 

.. 

cp = 6 ; for revolute joint 

cp = S ; for prismatic joint 
and 

From equations 3-36 and 3-37, we can arrive at the following equations 

= [  G:]n 

Substitute equation 3-41 into equation 3-42 gives 

(3-41) 

(3-42) 

(3-43) 
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Fig. 3-2 Problem in Reverse Kinematic 
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Using the method of generalized dot product(Appendix A), defined by Freeman and 
Tesar[ 141, the second-order reverse kinematic state is given by 

-1 T - 1  

= [G:] i- [G;jT( [G:]-'a [H;,,,])[G:] 

= [ G:] + iT[ H:,,] 
(3-44) 

However, there is still one serious problem, and informed readers should ponder 

for a minute and ask the uestion how to determine and [H:ql. Recall in 

Section 3-2.1.3, 

arriving at equations 3-41 and 3-44, I42 has to be found. There are many different 
approaches which yield solutions for the joint inputs given the end-effector position 
and orientation. Interested readers are strongly urged to refer to Duffy [ll] as 
reverse position analysis will not be discussed here. 

Equations 3-41 and 3-44 are most useful in the context of this work, 

of course, provided that LG :I and [.: 91 are already known. The two equations give 
a systematic and general approach to solving the first- and second-order 

geomeuic(and time) derivatives of the joint parameters(9) in terms of the end- 
effector parameters&), which are among the most essential elements in determining 
the Cartesian based robot dynamic model. The first- and second-order KIC for serial 
manipulators with revolute and prismatic links are listed in Table 3-3 and Table 
3-4. Freeman and Tesar [ 141 expand the derivation to third-order KIC, which again 
will not be discussed here. 

and Lu q q  I are functions of the joint inputs 9. Thus, before 

3-3 General Amroach to De VeloD t he Dvnamic Model of Serial 
Manipulaton 

So far this investigation has focused on the study of kin-ma ic 
considerations(ie., velocity and acceleration) of serial manipulator. Nothing has 
been said about the generalized forces or torques associated with the rigid body 
motion. The determination of the forces or torques that are necessary to cause the 
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desired motion is another essential question to be answered in studying any 
manipulator (Greenwood [19], Hollerbach [20], Kane and Levinson [23], Lee, Lee 
and Nigam [25], Takano, Yashima and Yada [41], Torby [44], Tourassis and 
Neuman ([45], [46]), Walker and Orin [47]). This section will discuss the 
development of the dynamic model of serial manipulators. 

The derivation of the manipulator dynamics in this work is based 
almost entirely on Freeman and Tesar 1141. The two fundamental principles of 
mechanics employed in the derivation are the principle of virtual work and 
d'Alembert's principle. Similar to the kinematic model described in the previous 
section, the form of the dynamic equations is also expressed in terms of 
configuration dependent and time dependent terms. This separation greatly 
facilitates the transfer of generalized coordinates employed in developing the 
dynamic model. 

The dynamic model developed will be separated into two parts. The 
first part is the effect of applied loads on the manipulator generalized input loads by 
using the principle of virtual work. Then, d'Alembert's principle will be appiied to 
study the effect of the manipulator's inertia. The combination of these two parts 
enables one to express a highly geometric form of the dynamic model for a 
manipulator. 

3-3.1 Applied Loads 

Noting the simplicity of the robot kinematic expressions that result 

from separating the rotational and translational KIC, the derivation of the dynamic 
model of serial manipulators will follow this preferred scheme. Consider a M DOF 

j p  
serial manipulator in space with a set of M, 3 by 1 force vectors f along with a set 

of M, 3 by 1 moment vectors (j=l, 2, ..., M and k=j+l), acting respectively on 

point Jp and link jk. Using the principle of virtual work, the set of M generalized 
input loads required to offset the applied loads and keep the manipulator in static 
equilibrium can be determined. The virtual work done by the applied loads is 

jk 
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j -1 

and by the input loads is 

6W, = ( 1JTb 6t 

(3-45) 

(3-46) 

According to the principle of virtual work the total virtual work done on the system, 
which must be zero for equilibrium, is 

(3-47) 

or, substituting equations 3-45 and 3-46 into equation 3-47, 

Equation 3-48 implies that 

${  [ JG:] T .  'fP+[G:] T mi') 
(3-49) j-1 

L 
where 1 9  is defined as the effective input loads. Notice that the effective input load 

If has opposite sign from the required offset input loads Iq. The G- and H- 
functions are as defined by equations 3-19 and 3-25. 

3-3.2 Inertial Loads 

Consider the same M DOF serial mani ulator as in Section 3-3.1. 

, the local angular 
[ ti)njkj 

Defining the locally referenced inertia tensor as 
momentum of link jk is 

(3-50) 
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ti) Jk 

where Q is the absolute angular velocity of link jk expressed in terms of the 
local link frame. To express equation 3-50 in the fixed referenced frame, simply 

premultiply the equation by a rotation matrix [ T J  1. This gives 

Since 

rewriting equation 3-52 gives 

(3-5 1) 

(3-52) 

(3-53) 

Also, the inverse of the rotation matrix [ TJI  is its transpose due to its orthonormal 
property. Therefore, substituting equation 3-53 into equation 3-5 1 gives 

(J) j k  T j k  

LJk=[ TJ][ Il ][ TJ] QJ (3-54) 

Notice that the angular momentum is now expressed in the fixed reference frame. 
By defining the globally referenced inertia tensor as 

0 )  j k  

[IIJ? = [  T’][ Il ][ T’IT 

equation 3-55 can be written as 

(3-55) 

(3-56) 

Before continuing with the inertial load derivation, there is one more tern that needs 
attention. It is the mass center of each link, which is located by 

(3-57) 
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J 
where 3 is the vector from the origin of the fixed reference frame to the origin of 
link jk local reference frame. ('IC is the vector pointing from the local origin to the 
center of mass expressed in the local frame. The linear velocity and acceleration of 
the link center can be found by taking the time derivative of equation 3-57. The 
results are in the same form as equations 3-24 and 3-34 for the velocity and 
acceleration, respectively, due to the similarity between equations 3-2 1 and 3-57. 
This gives the velocity of the center of mass as 

and the acceleration as 

(3-58) 

(3-59) 

Finally, applying the generalized principle of d'Alembzrt, which is the 
combination of the principle of virtual work and the principle of d'Alembert, 
together with the Newton-Euler equations of motion gives the total effective inertial 
load as 

(3-60) 

Equation 3-60 correctly describes the effective inertial loads, but it is 
not in the desired form. Recall the fundamental rule in this work is to separate the 
position(or configuration) dependent terms from the time dependent terms. Freeman 
and Tesar [ 141 showed that the last term in equation 3-60 can be expressed without 
the cross product (in a quadratic form) as 



51 

... 

where 

(3-61) 

(3-62) 
j k  j k  

and equation 3-18 for a Now, substituting equation 3-28 for a 
equation 3-6 1 into equation 3-60 gives 

along with 

+ [Gr]'[IIj'] ( [Gr]  + ,'[Hr,] 4) 

(3-63) 

Rearranging gives 
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(3-64) 

Utilizing the generalized dot product mentioned in the previous section, equation 
3-64 can then be expressed as 

T1-[I*  
1" "[ 1 '  -Ip- (P(P 9+9 p,,, 9 (3-65) 

where 

[I;,,,] = 2 (btjk[ J G f [  JG;] + [ G r ~ [ I l J l l [ G ~ ] )  
j - 1  (3-66) . 

and 

j -1 

(3-67) 

Notice that equation 3-65 continues to separate the configuration dependent terms 
from the time dependent terms. The form of equation 3-65 is most desirable for the 
dynamic model of the effective inertial load of serial manipulators, in this context. 
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3-3.3 The Dynamic Equations 

Having determined the equations for the applied and effective inertial 
loads, the dynamic equations for a general M DOF serial manipulator can then be 
expressed as 

I L  
Trp= 1,- 1, 

(3-68) 

Equation 3-68 is expressed in a very compact and explicit form, yet not losing the 
fundamental rule of separating the configuration dependent terms from the time 
dependent terms. As a result of this formulation, modeling a serial manipulator can 
be broken down into the following steps: 

(a) set up the coordinate frame for each of the links according to the 

(b) specify the desired position and orientation of the end-effector; 
(c) perform the reverse position analysis to determine all the joint 

variables ( 1 for revolute joint and for prismatic joint ), and the 
location of the center of mass for each link; 

(d) if necessary, multiply any of the expressions by the rotation mamx 

[ TJ1 to express it in terms of the global coordinate frame; 
(e) form the G- and H-functions for the manipulator including the G- 

and H-functions for the mass center of each link, using Table 3-3 

convention adopted in Section 3-2.1; 

0 .  

and Table 3-4; 

(g) substitute into equation 3-68 for the dynamic equation. 

The simulation form of the dynamic equation can easily be obtained by 
rewriting equation 3-65 into the following form 
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j - 1  

(3-69) 

Integration of equation 3-69 will give the time history of the joint parameters 
resulting from the application of the generalized input loads. This concludes the 
discussion on the development of the kinematic and dynamic model of serial 
manipulators using the method of KIC. For more detail, readers are referred to 
Freeman and Tesar [ 141. The next chapter will expand the modeling technique to 
include parallel manipulators via the h-ansfer of generalized coordinates. 



CHAPTER 4 

TRANSFER OF GENERALIZED COORDINATES 

The discussion thus far has concentrated on finding the kinematic and 
dynamic models of serial manipulators in terms of the relative joint parameters. 
However, these may not necessarily be the models that one is interested in. For 
design and control purposes, one maybe interested in having the system model 
referenced to a different set of generalized coordinates. In the case of parallel 
mechanisms, one may desire to have the system model referenced to a common set 
of generalized coordinates. Unfortunately, at times, this model maybe impractical, 
if not impossible, to obtain directly. But, as it is usually true, most mechanisms can 
be modeled in terms of at least one set of generalized coordinates directly. This 
leaves researchers with the alternative to first determine the easily, or at least 
practically possible, direct mode1, then find a way to arrive at the desired model via 
the direct model. 

Freeman and Tesar [ 141 proposed using an isomorphic transformation 
technique called the transfer of generalized coordinates to obtain the desired model 
from the direct models. The development of this technique is based almost entirely 
on the principle of virtual work. This transfer of generalized coordinates procedure 
gives the method of KIC more generality and potential. As a result of this 
development, the method of KIC can now be used to model redundant or 
overconstrained systems, dual or multi-arms robots, and above all, multi-loop 
parallel mechanisms which is the theme of this work. 

4- 1 F-1 1T n f  

The transfer of the kinematic model can be broken down into two 
parts. One part is called the direct kinematic model transfer which has been briefly 
discussed in Section 3-2.1.4. And obviously, the other part is the indirect kinematic 
model msfe r .  Direct kinematic model eansfer is defined as any transformation that 
involves only the interchanging of dependent and independent system parameters. 

5 5  
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On the other hand, indirect kinematic model transfer involves the introduction of 
one or more intermediate coordinate sets before arriving at the desired model. 

4-1.1 Direct Kinematic Model Transfer 

Consider again the resulting forward kinematic model given in Section 
3-2.1.3. The first- and second-order time derivatives of a set of general position 
parametersb) are given as in equations 3-36 and 3-37, 

(3-36) 

(3-37) 

For the purpose of showing that 1 need not always represent the kinematic state of 
the end-effector, instead of using u as defined in Chapter 3, 4 will be used to 

represent the dependent system parameter, and !Q will represent any independent set 
of generalized coordinates, in the initial model. Following this scheme, the initial 
kinematic model is 

and 

(4-2) 

However, the desired kinematic model is to have P as the independent system 

parameter set, and 2 as the dependent system parameter set. This gives the form for 
the kinematic model as 

ie = L.:] 4 
and 

(4-3) 

(4-4) 



5 7  

Rearranging equations 4-1 and 4-2 also can give a form similar to equations 4-3 and 
4-4 

and 

-1 

;e=[G:] d, 

Substituting equation 4-5 into equation 4-6 for S? gives 

Utilizing the generalized dot product introduced in Chapter 3 gives 

Comparing equation 4-3 with equation 4-5, it is seen that 

[Gy] = [G:]-' 

Similarly, comparison of equation 4-4 and equation 4-7 gives 

(4-5) 

(4-7) 

(4-8) 

(4-9) 

(4- 10) 

Equations 4-9 and 4-10 show how G- and H-functions change when the dependent 
system parameter becomes the independent system parameter, and vice versa. 

Notice that this interchange is possible only if bq Q 1 is invertable, which means that 
it is non-singular and that p must be a potential set of generalized coordinates. 

As mentioned in Chapter 2, at singularity configurations, serial 
manipulators lose one or more DOF while parallel manipulators lose control of one 
or more DOF. However, for the purpose of this discussion, it is always assumed 

that bq 1 is non-singular. Also realize how the post super- and subscript help to 
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denote the dependent and independent system parameters while performing the 
transformation. They also serve as a checking device when writing the equations. 
Any error will show up as an irregularity in the form of the super- and subscripts. 

4- 1.2 Indirect Kinematic Model Transfer 

The previous section discussed how to interchange the dependent and 
independent system parameters if it is difficult to derive the desired model directly. 
This section will discuss the situation when it is laborious, if not impossible, to 
arrive at the desired model by direct kinematic model transfer. The procedure 
involves an intermediate set of generalized coordinates, which are employed to 
facilitate the determination of the desired model, due to its direct relationship with 
the desired coordinate set. Hence, the title indirect kinematic model transfer. 

Let's assume that it is desired to have the kinematic model of Q 
referenced to a set of generalized coordinates 4, but what is available directly is the 
dependent system parameters Q referenced to an initial set of generalized coordinates 

9. Thus, the initial kinematic model is obtained according to equations 4-1 and 4-2, 
as 

d, = [.:I i 
and 

(4- 1) 

Also, it is assumed that the kinematic coefficients of the dependent system 

parameters d referenced to the initial coordinates i42 are directly available. This gives 

d=[G:];! 

and 
(4-1 1) 

(4-12) 

However, what is desired is to express the kinematic state of P in terms of d as 
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S=[G:]d 

and 

Rewriting equation 4-1 gives 

- 1  

ie=[Gi]  ri 

Substituting equation 4-15 into equation 4- 1 1  for i4 gives 

Rearranging equation 4- 16 gives 

Comparing equation 4- 13 with equation 4- 17 yields 

(4- 13) 

(4- 14) 

(4-15) 

(4- 16) 

(4-17) 

(4- 18) 

This concludes the indirect transfer of the fmt-order KIC(ie., the G-functions). 

equation 4-12 as 
Next, the transfer of the second-order KIC will be derived. Rewriting 

Substituting equation 4-19 into equation 4-2 gives 

(4- 19) 

(4-20) 

Rearranging equation 4-20 and using the generalized dot product gives 
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(4-21) 

Substituting equation 4-1 1 for into equation 4-21 gives 

(4-22) 

Comparing equation 4-14 with equation 4-22 yields 

(4-23) 

as the desired second-order KIC. Equation 4-18 and 4-23 give the nec-s ary G- 
and H-functions for the kinematic model with the dependent system parameter P 
referenced to the desired set of generalized coordinates d. This procedure is not 
limited to the transformation of generalized coordinates involving only one 
intermediate set of generalized coordinates. There can be as many sets of 
intermediate generalized coordinates as the situation requires, provided that all the 
G- and H-functions are interrelated and can readily be determined either directly or 
indirectly. 

4- 2 D v n m c  Mode 1 Trans fer 

Similar to the kinematic model transfer discussed previously, the 
readily available dynamic model referenced to an initial set of generalized 
coordinates given as 

(4-24) 

where [I' 9 9  1 and [Po 9 9 9  1 are as defined in equations 3-66 and 3-67, respectively, may 
not be the desired model. Actually, the dynamic model referenced to another set of 
generalized coordinates is the ultimate goal. However, it maybe very difficult to 
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obtain this model directly. Hence, an operation to transfer the dynamic model from 
the initial set of generalized coordinates to the desired coordinates set is necessary. 

It is assumed that the kinematic influence coefficients between the 
initial and the desired coordinates sets are available in the following form 

d . = [ G t ] i  

and 
(4-25) 

(4-26) 

Using the principle of virtual work, the dynamic equation can be expressed in terns 
of the desired input set d as 

-T 

- T*=[G:] 1, 
or 

(4-27) 

(4-28) 
.. 

Substituting equation 4-6, with q replaced by d, for 9 into equation 4-28, 
rearranging, and using the generalized dot product gives 

(4-29) 

Substituting equation 4-5, with q replaced by d, for !42 and 9 into equation 4-29 
yields 
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+ d.T[Gi jT{([Gi]T* ['iQQ]) 

Comparing the form of equation 4-30 with that of equation 4-24, the dynamic 
equation referenced to the desired set of generalized coordinates(d) can be 
expressed as 

where 

and 

(4-3 1) 

(4-32) 

(4-34) 

Note that utilizing this generalized transfer, any readily obtained dynamic model can 
be transferred to any desired set of generalized coordinates once the KIC's relating 

to 92 are obtained. 
For the purpose of discussion, the above mentioned procedure is not 

the only way to arrive at the model referenced to the desired set of generalized 
coordinates. An alternate procedure involves the derivation of intermediate dynamic 
models. Instead of finding the kinematic model relating the initial set to the desired 
set of generalized coordinates, then performing the dynamic model transfer as 

before. the dvnamic model at each stage is determined. This means that if [G: 1 , 
w 

[.:Q], [.:I, i d  [H:dl are known, where g, 4, and d are as defined before, I d  is 

found in terms of 1, which is in turn found in terms of zv. First, it is assumed that 
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Tq is known. Second, transfer the dynamic model to the intermediate set of 
generalized coordinates as 

(4-35) 

Finally, transfemng from the intermediate set to the desired set of generalized 
coordinates yields 

(4-36) 

as the desired dynamic model. In equations 4-35 and 4-36, procedures similar to 
those of equations 4-24 through 4-34 are implied 

Both the procedures are valid as shown in Freeman and Tesar[ 141. 
The decision to choose either one of them is entirely up to the users. It depends on 
what variable relations are available and/or which is easier to obtain. However, the 
first approach is suggested by Freeman and Tesar[l4] and Hudgens E211 for design 
and control purposes since it maybe necessary to investigate more than one set of 
generalized coordinates. 

4-3 Application of Transfer of Generalized Coo rdinates to Multi-loop 
Parallel Mechanisms 

Generally, the load capacity of serial manipulators is limited by the 
size of the actuators (Driga, Eppes and Flake [ 101). Hence, for high load capacity, 
hydraulic actuators are commonly used due to their high load to weight ratio. 
However, the main shortcoming for using hydraulic actuaton is low precision. As 

mentioned before, the error in serial manipulators is additive. If hydraulic actuators 
are used in serial manipulators, the inaccuracy will be even larger. Therefore, for 
any robot with high load capacity and acceptable precision, parallel structure robots 
are frequently used. 

Chapter 2 gave a brief discussion of the work on parallel mechanisms 
that has been done by other researchers. This section will introduce a different 
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approach to parallel mechanism modeling using the method of KIC along with the 
transfer of generalized coordinates. However, unlike the open-loop serial 
manipulators that have been discussed so far, parallel manipulator structures are not 
as straight forward as the serial manipulators due to the fact that there is more than 
one way to form a parallel manipulator. The discussion here will concentrate on 
mechanisms that can be classified as "fully parallel," such as the generalized 
Stewart Platform shown in Fig. 4-1. Although the figure shows six legs connected 
to a common platform with each of the legs having six DOF, the procedure which 
will be discussed shortly is equally applicable to mechanisms having any number of 
legs, provided that each of the link has the same number of DOF as does the 
operational space. 

The generalized Stewart Platform in Fig. 4-1 has six DOF at the 
platform, but it has thirty-six joints. To control this mechanism, one has to decide 
which of the six out of the thirty-six potential input locations to choose. For a start, 
examinins the mechanism a little closer shows that it actually consists of six serial 
mechanisms connected to a common base and a common platform. Similar to the 
procedure discussed previously for serial manipulators, the first step is to obtain a 
model directly for each leg with respect to a set of generalized coordinates that can 
easily be determined. By treating the other five l e g  as if they do not exist, each leg 

is modeled with respect to its own joint coordinate set r g ,  where r(r=l, 2, ..., 6) is 
the leg number. This yields results similar to the serial manipulator discussed in the 
previous sections, ie., 

' 

where 4 represents the intermediate set of generalized coordinates associated with 
the six parameters describing the motion of the platform. Next, apply the direct 
kinematic transfer of equations 4-9 and 4- 10 to give 

and 

(4-37) 



r = 4  
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r = 3  

r = 6  r =  1 

Desired Generalized Cwrdinates 

Ininal Generalized Coordinates 

Fig. 4-1 Generalized Stewart Platform* 

*Adapted h m  Freeman and Tesar [ 141 
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From the transfer of the dynamic model as in Section 4-2, one has 

and 

(4-38) 

(4-39) 

(4-40) 

(4-41) 

Notice that until this point, nothing has been said about the platform 
itself. Actually, the model of the platform can be included in one of the legs in the 
above derivation. However, it is felt that separating the platform model from the 
legs gives a more explicit physical meaning in the final formulation. Now that all 
the legs are referenced to the same intermediate set of generalized coordinates, they 
can be combined together along with the inertia effect of the platform and any load 
applied to the platform. As a result, the dynamic model can be expressed as 

I- 1 (4-42) 

I- 1 (4-43) 

and 
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6 c  67 

where f and Jz1 
respectively. The terms, [ 

are a set of external forces and moments applied to the platform, 
and [ p q w l  are the platform effective inertia matrix 

and inertia power array, respectively, defined as 

where 

and the first three planes of [ p q q q l  are 6 by 6 null matrices, and 

(4-45) 

(4-46) 

(4-47) 
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are the components in the last three planes. Equations 4-48 to 50 are all 3 by 3 
matrices. 

Up to this point the kinematic and dynamic model of the generalized 
Stewart Platform has been formed referenced to the common set of generalized 
coordinates 8. This common reference gives the flexibility to transfer the model to 
any six of the thirty-six potential joint inputs. One may desire to have a single leg 
provide control of all the six DOF or one may desire to control only one DOF from 
each leg. For the sole purpose of this discussion, let's assume that it is desired to 
have the first joint of leg one, the second joint of leg two, and so on, provide 
control of the six DOF. This gives the desired generalized input set as 

(4-5 1) 

To obtain the first- and second-order KIC relating the desired set of generalized 
coordinates d to the intermediate set 4, simply extract the corresponding row of the 
G-functions and plane of the H-functions, from equations 4-37 and 4-38 for the 
respective legs. This extraction yields 

HI = 

(4-52) 

and 
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(4-53) 

Having formed the KIC required by the transfer equations, the desired dynamic . 

equation can be written as 

where 

and 

(4-54) 

(4-55) 

(4-56) 

(4-57) 

The above derivation shows how to model multi-loop parallel 
mechanisms in terms of the relatively simple serial manipulator model. The beauty 
of this procedure is that serial and parallel mechanisms can be treated in exactly the 
same way. All that is needed are the isomorphic transformation equations. 
Throughout the derivation, the desired equations are always in the same basic form, 
ie., time dependent terms are separated from the configuration dependent terms. 

. 
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The G- and H-functions along with the [I*] matrix and [P’I array also maintain the 
same form throughout, hence the term isomorphic. 

mechanisms can be summarized in the following steps : 
The procedure discussed in this section for multi-loop fully parallel 

(a) number all the legs and joint inputs; 
(b) determine the kinematic and dynamic model of every leg, in terms 

of the easily obtained set of joint coordinates, by treating each of 
them as a single serial linkage; 

(c) perform the generalized coordinate transformation on each leg from 
joint coordinates to a common set of generalized coordinates; 

(d) include the inertia effect of the platform and any applied load; 
( e )  prepare to transfer the model to the desired reference by extracting 

the respective row from the G-functions, and plane from the 
H-functions; 

(0 form the desired dynamic equation by applying the transfer 
equations. 

In terms of symbols, the above procedure can be summarized and 
represented as 
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, 

This concludes the development of the kinematic and dynamic models 
of the generalized Stewart Platform using the method of KIC together with the 
isomorphic transformation of generalized coordinates. In the next chapter, all the 
techniaues and procedures discussed so far will be used to model the Dynamic 
Docking Test System, which was described briefly in Chapter 2. 



CHAPTER 5 

KINEMATIC AND DYNAMIC MODELING OF THE 
DYNAMIC DOCKING TEST SYSTEM 

As discussed in Section 2-2, the Dynamic Docking Test 
System(DDTS) is a mechanism consisting of a base and a platform connected by 
six legs as shown in Fig. 2-5. All the legs are made up of prismatic joints with one 
end of the leg connected to the platform by a ball joint and the other end connected 
to the base by two intersecting revolute joints(or hooke joint). It is obvious that the 
structural arrangement of the DDTS is a variation of the generalized Stewart 
Platform addressed in Section 4-3. 

A conceptual view of the DDTS showing the relative position of all the 
connection points for the legs on the platform as well as the base is given in Fig. 
5- 1. Notice that each leg has six DOF, three from the ball joint, two from the hooke 
joint and one from the prismatic joint. Although there can be one actuator for each 
DOF, the physical structure of the mechanism is designed such that only one 
actuator, located at the prismatic joints, is available for each leg. Therefore, the ball 
and hooke joints are free to rotate about their own axes. The following sections will 
discuss the development of the model, starting from coordinate frame definition to 
the final dynamic model. 

5- 1 Kinematic Model 

The approach taken here is different from that of Hudgens [21]. The 
main difference is that they considered the three generalized coordinates for the ball 
joint, with the X-axis of the last joint pointing towards the center of the platform, 
the two generalized coordinates for the hooke joint, and the global reference 
coordinate(or the base reference coordinate) together as one complete set of 
generalized coordinates. These six coordinates make up their initial set. On the other 
hand, the initial coordinates adopted in this work consist of three generalized 
coordinates, two located at the hooke joint and one at prismatic link, as shown in 

7 2  

1 
- 1  
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Fig. 5-1 Legs Arrangement 
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Fig. 5-2. This requires a slightly different set of transfer equations to determine the 
platform based intermediate model, which will be discussed in Section 5-3. 

It is felt that separating the coordinates into small subsets will facilitate 
the derivation and subsequently the computation. As a matter of fact, in the initial 
model, instead of 6 by 6 matrices, only 3 by 3 matrices need to be dealt with. This 
is made possible by neglecting the three DOF of the ball joint, which will constitute 
three mutually orthogonal rotational axes. To neglect the ball joint in the first set of 
coordinates, the first-order KIC relating the hooke and prismatic joints to the 
platform must be independent of the three pseudo axes of the ball joint. This 
independency can be shown by employing the matrix partitioning technique to the 
G-functions as illustrated in Freeman [16]. However, the one shortcoming that 
arose from dividing into three sets of generalized coordinates is that it was 
necessary to perform several of the previously discussed generalized coordinate 
transfers. Since all the six legs are identical, only one of them need be discussed in 
the development of the total system model. 

5-1.1 System Defintion 

As mentioned before, there are three DOF for each leg(neg1ecting the 
ball joint). Two of the freedoms are from the hooke joint, and the other one is from 
the prismatic joint. Following the convention adopted in Chapter 3, Section 3-2.1, 
the three coordinate frames for each leg are set up as shown in Fig. 5-2. The fixed 
frame for each leg is indicated as X, Y and Z in the figure. This frame is fixed 
relative to each leg so that it behaves like a local global frame for each individual 
leg. To transform the expression to the globally referenced frame at the center of the 
base, one needs only to multiply the local global frame results by a rotation mamx. 

Before all the different reference frames get too complicated, it is 
appropriate to define each of the terms that will be used throughout this work. From 
now on, leg frame refers to the fixed frame for each leg(or the local leg frame in the 
above paragraph), which is represented by the X, Y and Z orthogonal unit vectors. 
Base frame is referred to as the world coordinate frame and is located at the center 
of the base. X*, Y* and Z* are used to represent the three mutually orthogonal unit 
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Fig. 5-2 Kinematic Representation of Olle of the Legs 
of the Dynamic Docking Test System 
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vectors for the base frame. Also, platform frame refers to the coordinate frame 
located at the center of the platform, represented by the lower case x, y and z, 
which will be discussed in a later section. The three coordinate frames mentioned 
above are shown in Fig. 5-3. 

Having a leg frame for each individual leg facilitates the modeling 
procedure. Since, with respect to this frame, all the six legs can be modeled 
identically. Refemng back to Fig. 5-2, & is defined as the length of the piston 
cylinder, Lr is the length of the piston rod, whereas, L3 is the total length of the 
piston, measured from the origin of the leg frame to the end of the prismatic link. 
Notice that & and Lf are fixed length but L3 is variable. 

Following the set up in Fig. 5-2 and the convention in Section 3-2.1, 
a simplified version of Fig. 5-2 can be made as illustrated in Fig. 5-4 along with the 
resulting link parameters. Defining 

gives 

where 
sei= sin( e, )  , cei= cos( e , )  

Similarly, defining 
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Z* 

Y* 

Fig. 5-3 Coordinate Frames Used for the DDTS 
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Fig. 5-4 Link Parameters for Each Leg 
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and premultiplying its local vector by the matrix T in equation 5-2 gives 

Notice that 323 and 3 3 4  are identical. This is expected since 3 - 3 4  is in the last link 
and can be arbitrarily chosen to be parallel to 323. 

5-1.2 Specification of the Platform Position and Orientation 

To begin the kinematic analysis of the mechanism, it is assumed that 
the kinematic state of the end-effector(or the platform) is known. For any rigid 
body in space, its position can easily be specified by a vector pointing from the 
origin of the reference frame to a fixed point in the body. However, there are many 
ways to specify the orientation of the rigid body as discussed in Hudgens [21]. 
Euler angles, Cayley-Klein parameters and quaternions are some of the possible 
ways. 

The method employed in this work to specify the position of the 
platform is by specrfying the vector pointing from the origin of the base frame to the 
center of the platform. The orientation of the platform is given by a pair of 
orthogonal unit vectors fixed at the center of the platform. One of these vectors is 
normal to the surface of the platform. The vector cross product of these two unit 
vectors gives the third vector to make up the three mutually orthogonal unit vectors, 
which define the platform frame. Fig. 5-5 illustrates the specification for the 
position and orientation of the platform. Vectors a and 3 represent the two mutually 
orthogonal unit vectors used to specify the location of x and z axes, respectively, 
of the platform frame in the base frame. 

Once the position and orientation of the platform is.known, the 
positions of all the six connecting points (ie., the ball joints), which are fixed with 
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Fig. 5-5 Specification of the Platform Position 
and Orientation 



8 1  

respect to the platform frame, can now be transformed to the base frame by a simple 
rotation matrix T, 

T = [  B S X B  s ] 
and a linear translation vector 

y= [ UX' U y '  Uy]T 

Note that equation 5-6 is in the basic form of equation 5-2. 

5-1.3 Reverse Kinematics of Each Leg 

(5-6) 

(5-7) 

The coordinate frames for each leg are set up in the previous section. 
Furthermore, vectors si and %k for each joint are determined using equations 5-3 
and 5-5. However, as stated in Chapter 3 that in all practical purposes, the end- 
effector(or in this case the point P in Fig. 5-1) kinematic state is usually known 
instead of the state at each joint. Thus, this section will discuss the reverse 
kinematic(position only) of each link via the geometric approach. 

The geometry of each leg can be represented as in Fig. 5-6. The 
origin of the leg is always at the origin of the leg frame. The other end of the leg is 
located at point P( X,, Y, and ), the ball joint, which is determined by knowing 
the specified platform position and orientation and the location of the point P 
relative to the platform frame. As indicated in the figure, each leg can be 

characterized by two parameters( ie., and "2 ). The length of the leg can be 
written as 

2 2  L3= 4x;+ Y, + z, (5 -8)  

Also, 
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Fig. 5-6 Reverse Position Kinematic of the Leg 
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and 

wz= sine1[ 'P ) 
L3 sin w1 

By geomev and the definition of ' 1  and ' 2 ,  it can be shown that 

e ,=  180+w2 

and 
e,= 180 + w l  

(5- 10) 

(5- 1 1) 

(5- 12) 

Equations 5-1 1 and 5-12 provide the solutions for the unknowns in equations 5-3 
and 5-5. 

5 -  1.4 Initial First- and Second-order Kinematics of Each Leg 

From the given conditions, treating the relative joint parameters as the 
independent system parameters, all necessary G- and H-functions can be easily 
obtained directly. Recalling equations 3-24 to 3-34, the velocity and acceleration of 
the ball joint can be written as 

and 

(5- 13) 

(5- 14) 

(5- 15) 

where r(r=1,2, ..., 6) is the leg number. However, instead of the 6 by 6 matrix for 
the G-functions and 6 by 6 by 6 array for the H-functions as before, the G-function 
here is a 3 by 3 matrix, where the H-function is a 3 by 3 by 3 array, since each leg 
has three DOF. 
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From Table 3-3, the first-order KIC for each leg can be expressed as 
shown in Table 5-1. Similarly, using Table 3-3 and the fact that 

(5- 16) 

where equation 5-16 is expressed in terms of the leg frame and 

rB1= r R 2  = Q  (5-17) 

the second-order KIC are shown in Table 5-2. 
This section also includes the first- and second-order KIC for the 

center of mass of each link to be used in the dynamic model. They are tabulated in 
Table 5-3 and Table 5-4, respectively. Notice that the second-order KIC for point P 
and the center of masses in Table 5-2 and Table 5-4 are all symmetric matrices. 

5-1.5 First- and Second-order Kinematics of the Platform 

Recalling Section 5- 1.2, the positions of the six connecting points at 
the ball joints are fixed with respect to the platform frame. Define the location of the 
ball joints in the platform frame as 

(5- 18) 

where the pre-superscript (pl) denotes the platform reference frame. To rotate the 
vector in equation 5-18 to the base frame, simply premultiply equation 5-18 with 
the rotation matrix T, which is defined as 

r 1 
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Table 5-1 First-order KIC for Each Link 
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Table 5-2 Second-order KIC for Each of the Links 
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TabIe 5-2 Second-order KIC for Each of the Links 
(con t .) 
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I 0 

0 

0 

where 
of mass of the piston cylinder. And 

is the length from the origin of the link frame to the center 

L* L=L3- -  2 

with L3 defined as the total length of the prismatic link, and 
piston rod length. 

is the 

Table 5-3 First-order KIC for Each of the Center of 
Masses 



8 9  

I o  0 0 

0 0 

0 0 0 

0 yce, 0 

0 0 0 

L C  

0 

1 
1 

Table 5-4 Second-order KIC for Each of the Center of 
Masses 
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r o  0 0 

TabIe 5-4 Second-order KIC for Each of the Center of 
Masses (cone.) 
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Letting 
c = s x a  

and substituting into equation 5-5 yields 

T = [  ,a !2 S I  

x: 

z: 
=[ Y: YS 1 

(5- 19) 

(5-20) 

where the first column is the unit vector of the platform x-axis, the second column 
is the y-axis and the last column is the z-axis, ail expressed in the base coordinates 
frame, implied by the superscript (*). Thus 

or 

(5-22) 

To determine the G- and H-functions for the ball joints in terms of 
platform coordinates (which will be necessary to determine the G- and H-functions 

relating the joint coordinates r!Q to the platform coordinates y), the velocity and 
acceleration of the point P at the ball joint of leg r are written as 

(5-23) 

(5-24) 
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where IJ is the position vector of the origin of the platform frame expressed in the 

base frame, and and a are the angular velocity and acceleration of the platform, 
respectively. From equations 5-23 and 5-24, the fmt-order KXC are 

[ ‘G;] = IwZ - I w y  1 1 0 0 0 
0 1 0 -,wz 0 rwx 

(5-25) 
0 0 1 rw, -rwx 0 

The components in the three planes of the H-function are zero except the following 

(5-26) 

(5-27) 

(5-28) 

where m, n = 4 ,5 ,  6. As a result, the velocity and acceleration can be written as 

‘e = [ ‘ G ! ]  

‘P - = [ ‘G ; ]  + [ ‘H:,] rp 

(5-29) 

(5-30) 

in terms of the G- and H-functions. 
This concludes the kinematic modeling of the DDTS(or the generalized 

Stewart Platform) referenced to the initial sets of generalized coordinates(ie., 
and y). One very important point to note is that the derivation so far expresses the 
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G- and H-functions for P in terms of 9 in the leg frame, whereas, the G- and H- 
functions for P are in terms of y in the base frame. 

5-2 Initial Dvnamic Model of the Leos 

Similar to the kinematic modeling discussed in the previous section, 
the initial dynamic model also considers one of the legs and Beats it as if it is an 
isolated three DOF serial manipulator. Assuming that there is only inertial loading, 
the procedures to arrive at the initial dynamic model follow the derivation of Section 
3-3.2. Referring to Fig. 5-2, the model here assumes that the hooke joint is a solid 
cylinder, the piston cylinder and the piston rod are considered slender rods. Due to 
the symmetric nature of each of the links in the leg, all the local inertia tensors are 
diagonal matrices. 

Substituting the appropriate terms into equation 3-55, the leg frame 
referenced inertia tensor for each of the links in Fig. 5-2 are given in Table 5-5. The 
symbol I stands for the mass moment of inertia of each links, where 

I,, is along a12 I Z 1  is along s1 
1 x 2  is along 323 Ir2 is along s2 
Ix3 is along ,a3., Ir3 is along s3 

9 

7 

9 

Substituting the inertia matrices in Table 5-5 and the G- and H-functions determined 
in Section 5-1 into the effective inertia matrix equation 3-66 and the inertia power 

array equation 3-67 results in the model coefficients tabulated in Table 5-6 and 

Table 5-7, respectively. Finally, having determined [ r'i.1 and [ r p i ~ 9 1 ,  

substitution into equation 3-66, gives the initial inertial load expression for the 
dynamic model of each leg as 

(5-3 1) 
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0 

0 0 I21 

[ ,n12]= 

[ P 3 4 ]  = 

Table 5-5 Inertia Tensors 
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where 

2 

B = rZ2+ rY3+ M ~ ~ (  k)  + M ~ , L ’  

and 

L* L=L3- -  2 

Table 5-6 Effective Inertia Matrix 
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where 

1 0 

0 

0 

and 
Lr L=L3- -  2 

Table 5-7 Inertia Power Array 
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5-3 Trans fer of Generalized Coo rdinates to Obta in the Dvnamic Model 
Referenced to the Platfom 

Section 5-2 developed the initial inertial load model of each leg directly 

in terms of the relative joint parameters rg. Since it is assumed that there is no 
external load applied to the system, the controlling equation of motion in equation 
5-31 can be written as 

(5-32) 

Before arriving at the desired model, which will be referenced to the actuators, it is 
necessary to transfer the dynamic model in equation 5-32 to an intermediate set of 
generalized coordinates, which in this case is the platform coordinate set Y. Using 
the relations 

and 

‘P - = [ ‘G.’] 0 

‘p = [ ‘G:] + GT[ ‘H:,] 

equation 5-32 can be expressed as 

(5-33) 

(5-34) 

(5-35) 

(5-36) 

(5-37) 

where 
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(5-38) 

r . .  
Also, substituting equations 5-35 and 5-36 into equation 5-34 for ‘e and E gives 

(5-39) 
. 

the G- and H-functions for the joints referenced to the set of generalized coordinates 
associated with the platform can then be expressed as 

[ ‘G:]=[ ‘GI]“[ ‘G:] 

and 
(5-40) 

(5-41) 

Note, the kinematic influence coefficients relating the initial coordinate sets ‘9 to the 
platform coordinates Y, which are required to determine the platform based model, 

cannot be found by direct inversion of those relating II to rg as in Hudgens [21], 

since they do not exist. Here, ‘9 is related to P and P is related to y yielding the 

required relations of 1 9 2  to y as given by the above equations. Next, utilizing the 
relation 

-T 

‘Iu=[ 4 (5-42) 

the 6 by 6 effective inertia matrix and the 6 by 6 by 6 inertia power m a y  referenced 
to the platform set of generalized coordinates can then be expressed as 
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where 

T 

[ ‘P:,,]=[ ‘G:] .[ ‘PI,.] 

(5-43) 

(5-44) 

(5-45) 

Now that the dynamic model for each leg is referenced to the common 
platform generalized coordinates, they can be combined by substituting into the 
following equations similar to equations 4-42 and 4-43. 

6 

[ IJ = [ I U U I  + c r- 1 [ rI:u] 

6 

[ P:J = [ p u u l +  c [ ‘P:J 
r- 1 

(5-46) 

(5-47) 

Finally, to complete the model of the DDTS, the platform effective inertia matrix 
and its inertia power array need to be determined and substituted into the above 
equations. They can be expressed as 

[ Iuu] = 
0 MPI 0 QT 

0 0 MP1 Q’ 
Q Q Q [ npl] (5-48) 

Q Q Q  ] ; k , m , n = 4 , 5 , 6  
Q Q Q [ PuUu]k;m;~ 

[ pUUU]k;; = [ 
(5-49) 

where M,1 is the platform mass and the inertia tensor is 
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(5-50) 

with the local inertia tensor being 

Mp1W2 4 0 0 

0 Mpl w2 
4 0 

L 
(5-5 1) 

where W is the radius of the platform, which is the magnitude of the vector in 

equation 5-21. Note that the first three planes of [ puuul are 6 by 6 null matrices, and 

[Puuu16;.;.=[ * Y  I I - ' X  I I 

where my n = 4,5,6. 

-'IY ] 
*IX ] 
- 0 1  

(5-52) 

(5-53) 

(5-54) 

As a result of the above transfer of genera,,Led coordinates, the 
completc dynamic model of the DDTS is now referenced to the common set of 
platform coordinates. The next section will discuss the final transfer of system 
dependence to the desired set of generalized coordinates. 
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5-4 Transfer of the Dvnamic Model to the Des ired Set of Generalized 
c'oordinates--The h u t  Actuatoq 

Having the complete model of the system referenced to the platform 
coordinates, the final step is to transfer the model to each of the actuators. Since the 
actuator in each leg is at the third joint, the desired set of first-order KIC can be 
obtained by merely extracting the third row from the result of equation 5-40 for 
each of the legs, ie., 

[.:I = 

(5-55) 

Similarly, the second-order KIC is obtained by extracting the third plane from the 
result of equation 5-41 for each of the legs, ie., 

[ H:,] = 

(5-56) 

This extraction procedure has been described in Section 4-3. Once equations 5-55 
and 5-56 are determined, the effective inertia matrix and inertia power may  can 
easily be computed by recalling equations 4-55 and 4-56 as 
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(5-57) 
and 

(5-58) 

Finally, substituting equations 5-57 and 5-58 into the dynamic equation 

gives the necessary generalized force at each of the actuators d where 

d =  [ 11 
6 s  3 

(5-59) 

(5-60) 
This concludes the dynamic modeling of the generalized Stewart 

Platfonn(or the DDTS) needed for the simulations addressed in the next chapter. 
Again, note that the final model essentially results from the multiple application of 
the isomorphic transformation equations to simple open-chain models. This avoids 
the much more difficult task of determining the desired dynamic model directly in 
terms of the desired generalized input coordinates. 
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CHAPTER 6 

APPLICATION OF THE MODEL 

Verificah 'on of the Model 

The complete model of the generalized Stewart Platform(or the DDTS) 
was developed in Chapter 5. The final model is used to calculate the generalized 
forces for each input, given the position, velocity and acceleration of the inputs, 
which are determined once the platform motion is specified. This section will 
discuss three different approaches employed to verify the modeling technique, 
particularly the distribution of the system mass parameters introduced in Chapter 5 .  
Additional verification of the general modeling technique can be found in Freeman 
and Tesar [ 141. 

6-1.1 Special Case Model 

The first verification procedure involves specifying a system in which 
the desired model coefficients are available by inspection. Applying the transfer 
procedure and comparing those results with the known coefficient values completes 
the verification process. 

Instead of having the third(or the prismatic) joint from each leg be the 
input locations as in Section 5-4, the first joint, which is the fixed revolute of the 
hooke joint, is specified as the desired input location for each leg. Thus, 

r lT 

is the desired input set. Furthermore, only the f is t  joint from each leg is given mass 
so as to have direct knowledge of the desired model. Hence, substituting rM12 = 

10.0kg and the radius of the hooke joint as r = 0.06m into Table 5-6, gives the 
effective inertia matrix as 

1 0 3  
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0.018 0 
0 

0 0 0 

where 

2 
rMIZrZ = 0.018 kg.m 2 A =  I z l =  

(6-3) 

Note that the pre-subscript r in rM12 refers to the leg number and the r in r2 refers 
to the radius of the hooke joint. 

Following these assumptions, by inspection, the effective inertia 
matrix referenced to the desired set of coordinates(equation 6-1) is 

[Idd] = 

0.018 0 0 0 0 0 
0 0.018 0 0 0 0 
0 0 0.018 0 0 0 
0 0 0 0.018 0 0 
0 0 0 0 0.018 0 
0 0 0 0 0 0.018 

1 (6-4) 

Also, the inertia power array [ ' i d d l  is a 6 by 6 by 6 null a-ray(ie., each actuator is 

only responsible for its own mass). 

Having knowledge of the expected results for [ I '  dd 1 and ['idd], the 

modeling procedure outlined in Chapter 5 is then applied. First, the directly 
available joint referenced model coefficients for each leg, 

are determined. Second, applying the transfer of generalized coordinates to the 
results in equation 6-3 to obtain the model referenced to the common set of platform 
coordinates (equations 5-40 to 5-44) yields 
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0.0020 0 0 -0.0023 0 0 

-0.0023 0 0 0.0030 0 0 

0 0.0029 0 0 0.0011 -0.0012 
0 0 0.0029 0 0.0012 0.0011 

0 0.0011 0.0012 0 0.0039 0 
0 -0.0012 0.0011 0 0 0.0039 - 

Since the platform is assumed to be massless, equations 5-46 and 5-47 become 

[ I:,] = i [ L] 
r- I 

and 

[ PJ = f: [ 'p:,.] 

Equation 6-7 gives 

[I:,] = 

r- I 

05-71 

which is a symmetric matrix. Then, performing the extraction procedure discussed 
in Section 4-3 to the first- and second-order KIC in equation 6-4 to obtain 

(6-10) 

and 
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(6-1 1) 

as the G- and H-functions relating the desired input coordinates(d) to the common 
platform coordinatesal). Finally, applying the transfer equations again one arrives 
at the desired model coefficients(equations 5-57 and 5-58), 

and 
(6-12) 

(6-13) 

Substituting equation 6-9 and the result from equation 6-8 into equations 6- 12 and 
6- 13 yield 

and 

0.01 
0 

: i d ]  = [ 
0 
0 

p:dd]X;; = [ 

8 0 0 0 0 0  
0.018 0 0 0 0 

0 0.018 0 0 0 
0 0 0.018 0 0 
0 0 0 0.018 0 
0 0 0 0 0.018 

0 ] ; k =  1, 2, ..., 6 

(6-14) 

(6-15) 

where each plane in equation 6-15 is a 6 by 6 mamx. Comparison of the results of 
equations 6-14 and 6-15 with the known results partially verifies the model 



107  

developed in Chapter 5 and the computer program written for the simulation in the 
later part of this chapter. 

6- 1.2 Verification of the Result for the First-order KIC 

One quick and simple way to check part of the model is by verifying 
the first-order KIC. From Table 3-3, the directly obtained first-order KIC can be 
expressed as 

33 

(6-16) 

where a and b are some constants, and from equation 5-25 

. 
(6-17) 

are the platform referenced G-functions. Using the transfer of generalized 

coordinates and realizing that only the third column of [ is needed since each 
leg’s actuator is located at the third joint(prismatic), equation 5-45 can be written as 

Furthermore, since 

(6-18) 

(6-19) 

the third row in the above expression can be shown to be 



Rewriting equation 6- 18 gives 

Substituting equation 6-20 into equation 6-21 yields 

where 
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(6-20) 

(6-21) 

(6-22) 

(6-23) 

which is as previously determined in equation 5-21. 
Since equation 6-1 8 relates the directly obtainable initial G-functions 

to the G-functions needed for the final transfer to the desired model, the above 
procedure effectively checks the validity of the results for the G-functions used in 
the desired model. 

6-1.3 Actuator Motion Verification 

Another way to partially verify the model is by checking the first- and 
second-order KIC used throughout the process. The method adopted here is to 
compare the result determined via the model developed in Chapter 5 with that 
obtained from direct mathematical calculation. This method also serves as a check 
for the verification process described in Section 6- 1.2. 

and d are the velocity and 
acceleration of the actuators (ie., the prismatic links) in this model. As seen 

.. 
Recalling equation 5-59, the terms 
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throughout the development in Chapter 5 ,  the general expression for the velocity 
and acceleration of the linear actuators can be written as 

d = [ G:] + UT[ H:,] 

(6-24) 

(6-25) 

However, the velocity and acceleration can also be determined directly by taking the 
time derivative of equation 5-8, ie., 

2 2 2 2  L3 = x, +Y, +z, 

to obtain the velocity expression as 

x ,XP +Y , Y ,  +zpzp L3 = 
L3 

Taking the time derivative of equation 6-27, gives 

2 2  2 2 
.. x,x,+ xp +Y,Yp+ Yp+zpzp+zp - L3 L3 = 

(6-26) 

(6-27) 

,6-28 

for the acceleration. 
Assuming that the platform motion ( u, and ) is known, 

comparing the results calculated from equation 6-24 with equation 6-27, and 
equation 6-25 with equation 6-28 for each leg, that is, 

and 

I 

(6-29) 

(6-30) 

where r=l,  2, ..., 6 is the leg number, verified the G- and H-functions derived for 

the model. This is because [ ‘:I and [ H:ul are derived using [ ‘:I, [ H:91, [ Gml, 
[ H:,l and all the intermediate G- and H-functions. If [ and [ H:ul are checked, 
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all the other G- and H-functions are checked too. This concludes the verification for 
the G- and H-functions. 

6- 2 Simulation of the Dvnamic Docking Test SvstemDDTS) 

This section discusses several computer simulations for the DDTS 
based on the model established in Chapter 5 .  The simulations are coded in 
FORTRAN language employing a VAXIVMS 111750 computer. A complete 
computer listing of the program written for one of the simulations is listed in 
Appendix B. The computer listing is for the case when the platform is translating 
and rotating about the X* axis using a class p=3, 3-4-5 polynomial curve, which 
will be discussed very shortly. To use the program for any other motion, one only 
needs to modify the subroutine "NEXT-MOTION" and the respective parameters in 
the calling statement. The input data corresponding to the subroutine 
"READ - DATA" for the program listed in Appendix B is listed in Appendix C. The 
main purpose of these simulations is to investigate the relative contribution to the 
overall generalized forces, required at each actuator, of the acceleration related (ie., 

[ I a d l  ) and the velocity related (ie., [ ' a d d 1  ) terms. 
Four different motion specifications for the platform are adopted from 

Matthew and Tesar [29]. The f i s t  motion is the class p=2, constant acceleration 
curve as shown in Fig. 6-1. The subroutine "NEXT - MOTION" for this motion is 
listed in Appendix D. The second motion is the class p=3,3-3-5 polynomial curve 
as in Fig. 6-2. The last two motions both belong to class p=4, one of them is the 4- 
5-6-7 polynomial curve and the other one is a 3rd derivative trapezoidal curve, as 
illustrated in Fig. 6-3 and 6-4, respectively. Similarly, the subroutines 
conesponding to these two motions are listed in Appendix E and F, respectively. 
The use of class p=2, 3, or 4 in this context indicates that a jump or discontinuity 
occurs in the pth derivative of the motion function. The expressions for the 
displacement, velocity and acceleration corresponding to each of the motion curves 
are also listed along with the figures. The maximum displacement is denoted by Y 
and the total time taken is denoted by t. Note that the 3'd derivative 

- 
- 
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Time 

Y =7j- 2y[ t t2-2 (t-$] 

y -  L5[ -2  t - 2  ( t - -  93 
y - - 2  -”[ 1 - 2  ( t - -  I)O] 

t 

t 

Fig. 6-1 Class p=2, Constant Acceleration 



1 1 2  

7 Acceleration 
1.5 

0.0 

-1.5 
0 1 

y = y [  lo(:) 3 -lS(;) 4 + 6 ( : ) ]  5 

Fig. 6-2 Class p=3, 3-4-5 Polynomial 
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3.5 

0.0 

-3.5 
0 1 

y = y [  X ( i j - 8 4 ( i [ + 7 O ( i r - 2 O ( i r ]  

3 4 S - 
' =T .[ i 40 (  i) -420(  i) +420(  i) - 140( $1 

2 3 4 yw=:[420(i) - - 1 6 8 0 ( i )  +2100( i )  -84O($] 

t 

Fig. 6-3 Class p=4, 4-5-6-7 Polynomial 
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7 Acceleration 
2.1 

0.0 

-2.1 

Jerk 

0 I 

1 

t - t 4  - t - t S  
f -  A21 ( t - t 2 y - ( t - t l > ’  - ( 

i !  1 t 3 -  t 2  J t 5 -  f 4  

c 1 

+- A31 ( t - t 4 ) i - ( t - t 5 > ’  - ( t - t 6 ) 1 - ( t - i )  - 

y : i = 4 ;  y : i = 3 ;  y : i = 2  

Fig. 6-4 Class p=4, 3rd Derivative Trapezoidal 
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trapezoidal curve involves three constants Al, A2 and A3. They can be determined 
by using the expression 

2y -2c1 

(6-3 1) 

and 

where C1, C2, C3 are the integration constants resulting from the initial conditions. 
Detailed derivation of equations 6-3 1 and 6-32 is given in Matthew and Tesar [29]. 
The subroutine used in the simulation to determine the constants Al ,  A2 and A3 is 
listed in Appendix G. 

Besides employing different classes of motion specifications, two 
arbitrarily chosen platform trajectories are investigated. First, the platform moves 
vertically along the X* axis from 3m to 4m, while simultaneously rotating about the 
same axis from 0 to -60 degrees, as shown in Fig. 6-5. In the second najectory, the 
platform moves horizontally along the Z* axis from Om to lm  while X* remains 
constant at 3m. As before, the platform rotates about the X* axis from 0 to -60 
degrees. This trajectory is illustrated in Fig. 6-6. For the second trajectory, only 
the class p=3, 3-4-5 polynomial motion is investigated. In addition, a different 
investigation is also conducted to study the relative contribution of the platform and 
leg mass to the effective inertia matrix and the inertia power may. This can be 
achieved by first assuming that only the platform has mass while the legs are 
massless, then assuming that the six legs have mass while the platform is massless. 
This investigation is conducted using the trajectory in Fig. 6-6 and the 
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s 

z* 

Y* 

Fig. 6-5 Translating and Rotating about X* Axis 
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\ 

Fig. 6-6 Translating Along Z* Axis 
Rotating About X* Axis 
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class p=3, 3-4-5 polynomial, since it is felt that this trajectory provides a more 
general study due to its non-symmemc nature. The total time taken for each motion 
is 2sec, with an interval of O.lsec for every time step. The dimensions of the base, 
platform, legs and all other components used in the simulations are listed in Table 
6-1. Note that the numbers adopted here are all estimated values based on a 
photograph of the DDTS since the actual numbers were unavailable. The mass of 
the six legs and the platform are intentionally slightly overestimated to accommodate 
the likely application of the mechanism for large space vehicle docking purposes. 

and d ) and the required 
generalized forces at each actuator, along with the contribution from the velocity 
and the acceleration related terms, are plotted in Fig. 6-7 through Fig. 6-29. The 
notation used to denote the figures is a set of five alphanumerics. The code starts 
with an uppercase letter denoting which platfom trajectory is being employed. "D* 
is for the trajectory that translates and rotates about the X* axis. "E" refers to the 
trajectory that translates along the Z* axis and rotates about the X* axis. The 
following digit indicates which type of motion specification is used. The digit "4" is 
for the class p=2, constant acceleration, "5" is for the class p=3, 3-4-5 polynomial, 
"6" is the class p=4,'4-5-6-7 polynomial, and finally, "7" refers to the class p=4, 
3'd derivative trapezoidal curve. The last digit denotes the total time allowed, which 
in this work is always 2 for two seconds. The last lowercase letter refers to the leg 
number, from "a" for leg 1 to "f' for leg 6. The two zeros in the code s e n e  no 
practical purpose. For the first trajectory (ie., translating and rotating along/about 
the X* axis), the required generalized force curves of each leg are plotted following 
the plot for the position, velocity and acceleration of the actuator for that particular 
leg. 

.. 
The resulting actuator motions ( ie., d, 

6-3 Concl u sions 

Comparing the plots for the platform motion ( ie., u, and ) with 
the plots for each actuator's motion (ie., d, and d ) does not show a direct 
relationship between them. This implies that in equations 6-24 and 6-25, 

.. 
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Radius of the base = B = 3 m 

Radius of the platform = R = 2 m 

Radius of the Hooke joint = r = 0.06 m 
(modeled as cylinder) 

Length of the piston cylinder = 

Length of the piston rod = 

Mass of the Hooke joint = Mi2 = 10.0 kg 

Mass of the piston cylinder = M23 = 200 kg 

= 3 m 

= 3 m 

Mzss of the piston rod = M34 = 175 kg 

Mass of the platform = M,I= 2250 kg 

Table 6-1 Estimated Dimensions and Mass of the 
Generalized Stewart Platform 
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d = [  Gt]Ji  (6-24) 

(6-25) 

the G- and H-functions are nonlinear, as expected. This is particularly obvious by 
comparing Fig. 6-1 for the platform motion with Fig. 6-8 and 6-10 for the actuator 
motion. When the platform is moving with constant acceleration and deceleration, 
the actuators are moving with nonlinear acceleration and deceleration. Notice that 
for "D" trajectory, only leg 1 and leg 2(ie., "a" and "b") are plotted. This is because 
this trajectory is symmetric about the X* axis. Hence, all the odd number l e g  are 
the same, as are all the even number legs. 

Next, looking at the plots for generalized forces versus time for each 
of the motions, as expected, at the beginning of the motions when the velocities are 
small, the acceleration related forces dominate the required generalized forces for 
the actuators. Overall, the acceleration related forces are generally more significant 
than the velocity related forces. This is because the elements of the effective inertia 

enerally have larger magnitude than that of the elements for the hema 

power array 'ddd]. Furthermore, it is observed from Fig. 6-7, 9, 11, ..., 21 that d 
remains relatively small, less than I d s ,  with respect to d. Recalling equation 5-59, 

Iidl I ' .. 

(5-59) 

for the generalized forces, since [ is operated on quadratically by d, the 
velocity related term is expected to be smaller than the acceleration related term. In 

addition, examining the configuration dependent effective inertia matrix , 
reveals that it is symmetric, which is consistent with its definition, and the 
magnitude of the diagonal elements are generally larger than the off-diagonal 

elements. This implies that [ ' i d 1  has the tendency to decouple, although not 

completely. An example of [ ' i d 1  is shown in Table 6-2. Table 6-2 also shows an 

[ I i d ]  
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- 
-172.0 75.1 20.9 9.7 -73.7 131.3 

25.0 -423.6 85.4 -37.4 53.3 -8.1 
220.2 58.7 15.6 1.6 -152.2 ~ 100.0 

-122.5 -11.7 77.5 -120.4 239.3 -82.4 
-62.6 -5.9 32.9 108.8 -96.6 -53.2 L -2.0 18.3 18.6 24.8 53.8 -83.2 

1288.6 334.8 -114.2 472.9 -195.4 -856.4 
334.8 1622.9 -919.5 -516.3 536.0 -535.3 

-114.2 -919.5 1145.7 370.3 -52.4 500.5 
472.9 -516.3 370.3 1631.2 -891.9 -543.6 

-195.4 536.0 -52.4 -891.9 1226.9 307.2 
-856.4 -535.3 500.5 -543.6 307.2 1650.1 

Table 6-2 Examples of Effective Inertia Matrixand a 
Plane of Inertia Power Array for the 
Generalized Stewart Platform 
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example of one of the plane of the inertia power array [ p d d d l .  Reviewing the 
general form of the inertia power array indicates that it is not decoupled nor does it 

have the tendency to decouple. The characteristics of the [ matrix and [ ' i d d l  

array give some very important information concerning the controlling equation for 
the implementation of real-time feedforward control, which will be discussed 
shortly. 

This work provides all the essential information for two different 
control strategies (Fu, Gonzalez and Lee [ 171, Luh, Walker and Paul [27], Ogata 
[32], Whitney [48]) for the generalized Stewart Platform( or DDTS ). To employ 
pure, non-dynamic, feedback control for the DDTS, merely specify the desired 
platform motion, the program will calculate the kinematic state of the platform at 
each time step. Subsequently, the required actuator lengths corresponding to the 
respective time step are calculated. Hence, in each segment of time, the initial and 
final positions of the actuators are known. This gives the necessary information for 
any of a number of position control algorithms. 

The main objective of this work is, however, to provide the necessary 
software for future study using the dynamic model to develop a control scheme, 
possibly the computed torque technique, for the DDTS. Basically the computed 
torque technique can be slightly altered to become a layered control having both 
feedforward and non-linear feedback components. The interaction forces among all 
the various joints are compensated by the control components. The feedback 
component is used to compute the necessary correction torque to compensate for 
any deviation from the desired trajectory. Due to the computational demands of this 
control scheme, for any real-time control, it maybe necessary to simplify the 
controlling equations. It is customary although not always acceptable, to neglect the 
velocity-related coupling terms and the off-diagonal terms of the acceleration-related 
matrix for closed-loop control of serial manipulators. But, very little has been 
mentioned for parallel manipulators. Hence, this work provides some insights for 
the control of parallel manipulators. 

array of the Stanford 
manipulator, generally shows that the inertia matrix is highly decoupled, the off- 

Investigating the [ ' i d1  matrix and the 
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diagonal elements are either zero or much smaller than the diagonal elements. and 

the elements in the [ 'iddl array are mainly zero. Examples of the l ie ]  rnauix and 

the [ 'ddd1 anay for the Stanford manipulator are shown in Table 6-3. This 
observation tends to support the simplification scheme adopted for some serial 
nmipulators as mentioned before. However, this scheme may not work effectively 

decoupled as it is for some serial manipulators and [ p d d d l  array is relatively 

significant in the parallel case. As a result, employing the same simplification 
scheme to the parallel manipulators is likely to result in larger error, subsequenrly 
relying more heavily on feedback control. 

The investigation conducted to study the effect of the platform mass 
relative to the leg mass in the effective inertia matrix and the inertia power anay 

shows that with only the platform having mass, the resulting elements in the 
mzmx generally have the same order of magnitude, although the main dizgonal 
elements are slightly larger than the others. On the other hznd, whcn :he six legs 

have mass while the p1a:forn is massless, the main dzgonal elements in the 
naiiix are geneidly larger than the . off-dizgonal elements by 2n or&: of mapirude. 
T:- zse two czses indicate that the plztfom hzs a larger coqling effect than the legs 
in h e  final dynamic model. This provides information for one of the essential 
factors in the design of parallel manipulators. The information indicztes thar the 

[ ' i d 1  inzmx h2s the tendency to decou?le when the m a s  of the legs increases, for 
the purpose of increaskg the rigidity, relative to the platfolm. Unfortunately, the 

inenia power 2iia does not show my nodcezble general tendency. Exanpies of the 

when the lees 2re mssless a d  when the platform is massless, iespecnvely. 
It is not the intention of this work to recommend the control smtegy to 

use for parallel manipulators. However, this work provides the essential model and 
software for further study of pvallel mmipulators. To axiive at an efficient and 
reladvely accurate control scheme for real-time control of the generziized Stewzit 

for parallel manipulators since the [ I '  dd 1 mamx for parallel manipulators is not as 

[ L] 

[ L] 

[ matrix and ip* ddd 1 array 2re shown in Table 6-4 and Tzble 6-5 foi the cizse 
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[ pidd] i ; ;  = 

I 

26920.0 0.0 -570.0 0.0 0 .o 0.0 
0.0 23045.0 0.0 0.0 10.0 0.0 

-570.0 0.0 95 .O 0.0 0.0 0.0 
0.0 0.0 0.0 15.0 0.0 0.0 
0.0 10.0 0.0 0.0 10.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 - 

- 
0.0 -5.0 0.0 0.0 0.0 0.0 

-15.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 

-10.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 - 

Table 6-3 Examples of Effective Inertia Matrix and 
a Plane of Inertia Power Array for the 
Stanford Manipulator 
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781.9 398.5 -47.2 412.4 -364.2 -514.4 
398.5 866.5 -573.8 -249.4 450.2 -340.0 
-47.2 -573.8 784.6 386.4 -346.0 484.2 
412.4 -249.4 386.4 836.8 -476.9 -232.5 

-364.2 450.2 -346.0 -476.9 923.1 330.3 
-514.4 -340.0 484.2 -232.5 330.3 819.6 

35.5 -75.4 -89.8 71.1 134.8 56.6 
2.4 20.3 158.6 -45.8 -76.1 -46.1 

-21.0 85.2 -69.7 -50.6 31.6 -67.4 
28.0 50.0 -6.5 -5.9 -29.0 51.4 
60.0 -45.4 -11.9 46.2 -176.1 37.1 
28.2 -16.8 -68.3 70.2 20.1 -220.9 

Table 6-4 Examples of Effective Inertia Matrix and 
a Plane of Inertia Power Array for the Case 
when the Platform has Mass but the Le, 0s are 
Massless 
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388.7 31.8 -5.5 55.2 -58.4 -165.3 
31.8 460.2 -169.9 -39.8 45.3 -86.8 
-5.5 -169.9 397.2 61.5 -70.7 42.3 
55.2 -39.8 61.5 397.4 -154.6 -41.4 

-58.4 45.3 -70.7 -154.6 414.7 46.8 
-165.3 -86.8 42.3 -41.4 46.8 434.5 

9.1 1 27.6 -22.2 -19.5 -13.0 11.8 
-44.9 62.2 11.7 19.4 17.2 -15.0 

I -43.2 13.0 -72.8 25.6 25.8 -31.5 
3.8 -3.4 -10.2 -27.7 -9.9 20.6 [ p ' d d ] = l  

33.4 -1.5 -6.1 2.3 -22.1 3.5 
39.8 -0.5 13.8 -11.1 -13.0 

Table 6-5 Examples of Effective Inertia Matrix and 
a Plane of Inertia Power Array for the Case 
when the Legs have Mass But the Platform 
is Massless 
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Platform, additional research focusing on different trajectories and motion 
specifications needs to be done. 

6-4 Summarv 

In the second chapter, a general overview of the parallel manipulators 
classified as generalized Stewart Platforms was presented. The basic design concept 
and the control of the mechanism originated by Mr. D. Stewart was discussed 
briefly. Subsequently, various applications that stemmed from the original concept 
were discussed along with the different approaches taken by various researchers to 
analyze the mechanism. 

The modeling technique adopted in this work, called the method of 
Kinematic Influence Coefficients, was addressed in Chapter 3. The notational 
scheme employed to facilitate the derivation of the model was also introduced. The 
presentation focused on modeling open-loop kinematic chains(or serial 
manipulators). The discussion included forward and reverse kinematic and the 
development of the dynamic model of serial manipulators. 

Chapter 4 concentrated on the development of an isomorphic 
transformation technique called the m s f e r  of generalized coordinates. This chapter 
started with the discussion of kinematic arid dynamic model transfer for serial 
manipulators and then further extended the technique to include multi-loop parallel 
mechanisms. A general procedure was developed to perform the transfer of system 
dependence from any initial set of coordinates to the desired set of generalized 
coordinates. 

Utilizing the modeling technique developed in the previous chapters, 
Chapter 5 established a complete model of the Dynamic Docking Test System. 
Starting from initializing the Denavit-Hartenberg parameters to the final desired 
dynamic model referenced to the common platform coordinates set, through a 
number of intermediate sets of generalized coordinates, this chapter described the 
procedures used to arrive at the final model for the computer simulation. 

As a note of advice for similar simulation programs in the future, it is 
felt that FORTRAN language is inefficient and cumbersome for the modeling 
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technique adopted in this work due to the many matrices and higher dimensional 
arrays involved in the operation. A more efficient computer language suitable for 
matrix operation (eg., APL) will reduce the time and effort spent in coding and 
debugging the program. However, APL may not be computationally efficient for 
real-time control. 



APPENDIX A 

DEVELOPMENT AND DEFINITION OF GENERALIZED 
SCALAR ( ) PRODUCT OPERATOR FUNDAMENTAL TO 

DYNAMIC MODELING AND TRANSFER OF COORDINATES 

1. Quadratic operation of a MATRIX on a three dimensional 

Given: 

array. 

[ A ] = M x N  Matrix 
[ B ] = N x M x M  Array 

Define: 

2 .  Quadratic operation of a VECTOR on a three dimensional m a y  

Given: 
d = M component column vector 

Define: 

= N x 1 vector 

1 5 2  
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3. Vector multiplication of quadratic result 

Given: 
[ C ] = K x N  matrix 
[ c ]k; = k* row of [ C 3 

Then 

+ .  . . +dTIClk;NIBIN;;d 

= scalar 

Define operator ( a )  "DOT' 

N 

[ c ] k; * [ B ] 5 [ C ] [ B ] n;; = M x M matrix 
0- 1 

= scalar multiplication of planes followed by a 
summation of the resulting planes 

4. Matrix multiplication of quadratic result using ( ) operator 
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= d T ( [ C l * [ B l ) d  

= K x 1 vector 

where ( [ C ]  e [  B ] ) = K x M x M 
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SIMULATION PROGRAM LISTING 
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C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM STEWART-PLATFORM 
ALL UNITS ARE IN SI 
Y AND Z POSITIONS FIXED 
X MOVED FROM X(m) TO Xf(m) AND ORIENTATION FROM Ai 

THE NOTATIONS USED IN THE PROGRAM MOSTLY 
TO Af@EGREES) 

CORRESPOND TO THE DERIVATION IN THE THESIS, 
EXCEPT THE FINAL DYNAMIC MODEL WHERE INSTEAD OF 
THE SUBSCRIPT "d" AS IN THE THESIS, THIS PROGRAM 
USED "q" 

REAL L3,L,II(3,3),Izzl ,Izz2,Ixx2,Ixx3,Iyy3,M23,M34,Lc,Lr 
DIMENS ION P-PL( 6,3) ,P-GL( 6,3) ,P-LK (6,3), 

+ ZSIphi-LK(3,3),ZPphi-LK(3,3,3),PF-Iuu(6,6), 
+ PF-Puuu(6,6,6),ZSIphi(3,3),ZPphi(3,3,3), 
+ 
+ ZHpqhi(3,3,3),PHI3( 100,6),Q(6,1),UDOT( 6, l), 
+ UDDOT(6,1),QDOT(6,1),QDDOT(6,1) 

ZGp-LK (3 , 3 1 ZHpp-LK (3 , 3 ,3 1 ,ZG pqhi( 3,3 1 , 

COMMON/ORIEN/X 1 ,Y 1 ,Z1 ,X 12,Y 12,Z 12 
COMMON/ARR-Gu/Gu(6,3,6) 
COMMON/ARR-Huu/Huu(6,3,6,6) 
COMMON/DIRECT/DGp(6,3,3),DHpp(6,3,3,3) 
COMMONG - Hpqhi/Gpghi(6,3,3),Hpqhi(6,3,3,3) 
COMMON/ ARRqhi-uu/Gphi-u( 6,3,6),Hphi_uu( 6,3,6,6) 
COMMON/SINERTIAghi/SIphi - LK(6,3,3) 
COMMON/POWERghi/Pphi-LK(6,3,3,3) 
COMMON/SINERTIA-u/SIuu( 6,6,6) 
COMMON/PO WER-uPuuu (6 , 6,6 , 6) 
COMMON/ARR-Gqu/G~u(6,6) 
COMMON/ARR-H~UU/HQ_UU(~,~,~) 
COMMON/Iuu/TOT-Iuu(6,6) 
COMMONPuuu/TOT~Puuu( 6,6,6) 
COMMON/Iqq/STAR-Iqq( 6,6) 
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C 

+ 
+ 
+ 

C 
C 
C 
C 
C 
C 

C 

C 
C 

+ 
+ 

COMMONPqqqP-STAR-qqq( 6 6 6 )  
COMMON/CGpHpp/L3 
READ IN ALL THE NECESSARY DATA 
CALL READ-DATA(X 1 ,Y 1 ,Z 1 ,X 12,Y 12,Z 12,XU,YU,ZU, 

R,B ,Izz 1 ,Izz2,Ixx2,Ixx3 ,Iy y 3,h423 ,M34,Lc,Lr, 
x 1 f,Y 1 f,Zl f,X 12f,Y 12f,Zl2f,XUf,YUf,ZUf, 

TMAX,NSTEP,THETA,THETAf) 
ATTENTION: ANGLE THETAf IS SPECIFIED AS POSITIVE, 

BUT THE ROTATION CAN ONLY BE NEGATIVE 
BECAUSE OF THE ASSUMPTION THAT THE 
XNlTIAL ANGLE ALWAYS STARTS FROM 
0 DEGREE, WHICH IS WHEN THE a12 AXIS IS 
PARALLELED TO THE BASE Y* AXIS. 

THETAf=-THETAfr3.1415926/ 180. 
XUi=XU 
THETAi=THETA*3.1415926/180. 
CALCULATE TIME STEP 
TSTEP=TMAX/NSTEP 
WRITE( 1 ,*)'TIME STEP=',TSTEP 
DO III= 1 ,NSTEP+ 1 

PTIME=(TII- l)*TSTEP 
CALCULATE THE NEXT PLATFORM POSITION AND 

CALL NEXT-MOTION(TMAX,FTIME,XUi,XUF,THETAi, 
ORIENTATION 

THETAf,XU,THETA, V,W,ACC,AL, 
Y 12,212) 

WRITE( l,*)' ' 

WRITE( 1,55)Xu,YU,ZU 
WRITE( 1 ,*)'PRESENT TIME=',PTIME 

WRITE( 1 ,*)'VELOCITY OF PLATFORM=',V 
WRITE( l,*)'ACCELERATION OF PLATFORM=',ACC 
WRITE( 1,66)X 1 ,Y 1 ,Z1 



C 
C 

C 
C 

C 
C 

C 
C 

C 
C 

C 

C 

C 

C 

+ 

WRITE( 1,77)X 12,Y 12,212 
WRITE( 1 ,*)'THETA=',THETA 
CALCULATE THE POSITION OF POINT P IN PLATFORM 
FRAME 

CALL P-PLATFORM(R,P - PL) 
GET THE ROTATION MATRIX TO ORIENTATE THE 

PLATFORM TO THE BASE FRAME 
CALL TRANSF-P-G 
TRANSFORM ALL THE POINTS ON THE PLATFORM TO THE 

BASE FRAME 
DO I=1,6 

ENDDO 
DO I=1,6 

CALL P-GLOBAL(I,Xu,Yu,Zu,P~PL,P - GL) 

TRANSFORM ALL THE POINTS ON THE PLATFORM TO 
THEIR RESPECTIVE LEG FRAME 

CALLP - LINK(I,B,P - GL,P - LK) 
CALCULATE THE G- AND H-FUNCTIONS FOR THE 

PLATFORM 
CALL CAL-Gu(1) 
CALL CAL-Huu(1) 

CALL CAL-G-Hpqhi(I,P-LK( I, 1 ) Q-LK (I,2) ,P-LK( I,3), 

DIRECT TRANSFER OF Hpqhi  
CALL CAL-Hphigp(I,ZGpghi,ZHpghi) 

CALCULATE THE G- AND H-FUNCTIONS FOR THE LEGS 

ZGpghi,ZHpqhi) 

ENDDO 
TO DETERMINE Gphi-u AND Hphi-uu 
CALL CAL-G-Hphi-uu 
SET UP THE INERTIA MATRICES AND POWER ARRAY 
DO I=1,6 
. CALL CAL-INERTIA(I,Izzl ,Izz2,Ixx2,Ixx3,Iyy3, 
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C 

C 
C 

C 
C 

C 
C 

C 
C 

C 

C 

+ 

+ 

M23,M34,Lc7Lr,SIphi - LK) 

Lc,Lr,Pphi-LK) 
CALL CAL~P0Wghi(171xx2,1xx3,1yy3,M23,M34, 

ENDDO 
TO DETERMINE Iuu AND Puuu 
CALL CAL-Iuu-Puuu 
CALCULATE THE PLATFORM INERTIA MATRIX AND POWER 

ARRAY 
CALL PFORM-INERTIA(R,II,PF - Iuu) 
CALL PFOFW-INEPOW(II,PF-Puuu) 
CALCULATETHE INERTIA MATRIX AND POWER ARRAY 

FOR THE SYSTEM 
CALLI - STAR - uu(PF-Iuu,TOT - Iuu) 
CALLP - STAR - uuu(PF - Puuu,TOT - Puuu) 
DETERMINE THE FINAL DESIRED FIRST- AND SECOND- 

ORDER KIC,Gq-u AND H p u u  
CALL CAL-Gq-u 
CALL CAL-Hq-uu 
DETERMINE THE DESIRED INERTIA MATRIX AND POWER 

. 
ARRAY I*qq AND P*qqq 

CALL cAL_mBlqq 
SPECIFIED THE PLATFORM MOTION 
UDOT(3,1)=V 
UDOT(4,1)=W 
UDDOT(3,l )=ACC 
UDDOT(4,1)=AL 
CALCULATE THE A W A T O R S  MOTION 
CALL CAL-QDOT(UDOT,QDOT) 
CALL CAL-QDDOT(UDOT,UDDOT,QDDOT) 
WRITE( 138) 
DO K=1,6 

WRITE( 1,99) UDOT(K,l),UDDOT(K, l),QDOT(K, l), 
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+ 

C 
C 

55 
66 
77 

+ 
88 
99 

QDDOTG, 1) 
ENDDO 
CALCULATE THE REQUIRED GENERALIZED FORCES FROM 

CALL GEN-FORCES(QDOT,QDDOV 
EACH ACTUATOR 

ENDDO 
FORMAT(X,'Xu=',FlS. 1075X,'Yu=',F15. 10,5X,'Zu=',F 15.10) 
FORMAT(X,'X 1=',F15. 10,5X,'Y 1 =',F15. 10,5X,'Z 1=',F15.10) 
FORMAT(X,'X 12=',F15. 10,4X,'Y 12=',F15. 1O,4X7'Z1 2=', 

F15.10) 
FORMAT(/,6X,'UDOT', 1 4X,'UDDOT', 13X,'QDOT', 1 4X,'QDDOT') 
FORMAT(X,4(F 13. 10,5X)) 
STOP 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* 
* 

* 
* SUBROUTINE READ-DATA 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE READ-DATA(X1 i,Y li7Zli,X12i,Y 12i,Z12i,XUi, 

* 

YUi,ZUi,X lf,Y lf,Zlf,Xl 2f,Y 12f, 
Zl  2f7XUf,YUf,ZUf,R,B,Izzl ,Izz2, 
Ixx2, 1xx3,1yy3,M23,M34,Lc7Lr7 
TMAX,NSTEP,THETAi,THETAfl 

REAL Izz 1 ,Izz2,Ixx2,Ixx3,Iyy3,M23 ,M34,Lc,Lr 
READ IN NTM- ORIENTATION OF THE PLATFORM 
READ (40,*) X li,Y li,Z li,X 12i,Y 12i,Z1 2i,THETAi 
READ IN INITIAL POSITION OF THE PLATFORM 
READ (40,*) XUi,YUi,zUi 
READ IN HNAL ORIENTATION OF THE PLATFORM 
READ (40,*)Xlf,Y lf7Zlf7X12f,Y 12f7Z12f,THETAf 
READ IN FINAL POSITION OF THE PLATFORM 

C 

C 

C 

C 
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READ (40,*) XUf,YUf,ZUf 
READ IN PLATFORM AND BASE RADIUS 
READ (40,*) R,B 
CALCULATE MASS MOMENT OF INERTIA 
CALL GET - CONST(1zz 1 ,Izz2,Ixx2,Ixx3,Iyy3 ,M23 ,M34,Lc,Lr) 
READ IN TOTAL TIME TAKEN 
READ (40,*) TMAX 
READ IN NUMBER OF STEPS NEEDED 
READ (40,*) NSTEP 
RETURN 
END 

C 

C 

C 

C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE NEXT-MOTION * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE NEXT - MOTION(TMAX,FTIME,XUi,XUf, 

+ THETAi,THETAf,XU,THETA,V, 
+ W,ACC,AL,Y 12,212) 

THIS SUBROUTINE CALCULATES THE NEXT PLATFORM C 
C MOTION USING D5002 

X=XUf-XUi 
TTA=THETAf-THETAi 
T=- 
XU=XUi+X*( lO.*(T**3)- l5.*(T**4)+6.*(T**5)) 
V=(X/TMAX)*(30.*(T**2)-60.*(P*3)+30.*(T**4)) 
ACC=(X/TMAX**2)*(60.*T- 18O.*(T**2)+ 12O.*(T**3)) 
THETA=THETAi+TTA*( lO.*(T**3)- 15.*(T**4)+6.*(T**5)) 
W=(?TA/TMAX)*(30.*(T**2)-60. *(T**3)+30.*(T**4)) 
AL=(?TA/TMAX**2) * (60.*T- 180. *(T**2)+ 120. * (T**3)) 
Y 12=COS(THETA) 
Z12=SIN(THETA) 
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THETA=THETA* 180./3.1415926 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE P-PLATFORM * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE P-PLATFORM(RQ) 
D E T E W  ALL THE POINTS ON THE PLATFORM IN TERMS C 

C OF THE PLATFORM FRAME 
DIMENSION P(6,3) 
ASSUME THAT THE ANGLE BETWEEN THE POINTS TOGETHER C 

C IS 5 DEGREES 
BETA=5. 
P( l , l )=R 
P(2,l )=R*COSD(BETA) 
P( 2,2)=R*SIND(BETA) 
P(3,1)=R*COSD( 120.) 
P(3,2)=R*SIND( 120.) 
P(4,l )=R*COSD( 120. +BETA) 
P( 4,2)=R* SIND( 1 20. + BETA) 
P(5,1)=R*COSD(240.) 
P(5,2)=R*SIND(240.) 
P(6,1)=R*COSD(240.+BETA) 
P(6,2)=R*SIND(240.+BETA) 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE P - GLOBAL * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE P-GLOBAL(I,Xu,Yu,Zu,P - P,P-G) 
THIS SUBROUTINE TRANSFORMS ALL THE POINTS ON THE 

COMMON/ARR-WARh4(6,3) 
COMMONA"-P-G/R( 3,3) 
DIMENSION P-P(6,3),P-G(6,3),P(3,1),AR(3,1) 

C 
C PLATFORM TO THE BASE FRAME 

P( l,l)=P-P(I, 1) 
P(2,1)=P_P(I,2) 
P(3,1)=P_P(1,3) 
CALL MATRIX - MULT(3,3,R,3,l,P7AR) 

C XP,YP,ZP IN GLOBAL COOR 
ARM(1, l)=AR( 1,l) 
ARM(1,2)=AR(2,1) 
ARM(I,3)=AR(3, 1) 
P - G(I,l)=XU+ARM(I,l) 
P_G(I,2)=Y u+ARM(1,2) 
P-G(173)=Zu+ARM(I,3) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* * 
* 
* 

SUBROUTINE P-LINK * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE P-LINK(I,B,P - -  G,P L) 
DIMENSION P - G ( 6,3 ) ,P-L( 6,3) ,P-LK (3,l) ,P (3 , 1 ) ,R (3,3), 

+ RI(393) 
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C 
C 
C TOGETHER IS 5 DEGREES 

XP,YP,ZP IN LEG COORDINATE FRAME 
ASSUME THAT THE ANGLE BETWEEN THE TWO POINTS 

DELTA=5 . 
IF(1 .EQ. 1) A L = O .  
IF(1 .EQ. 2) &DELTA 
IF(1 .EQ. 3) AL=120. 
IF(1 .EQ. 4) & 120.+DELTA 
IF(1 .EQ. 5 )  AL=240. 
IF0 .EQ. 6) AL=240.+DELTA 
CAL=COSD(AL) 

POINT 1 ON THE BASE IS CONNECTED TO POINT 2 ON THE 
SAL=SIND(AL) 

C 
C PLATFORM AND SO ON 

J=I+ 1 
F ( I  .EQ. 6)J=1 
P( 1 , l)=P-G(J, 1) 
P(2, 1)=P-G(J72)-B*CAL 
P( 3,l)  =P-G( J,3) -B *SAL 
CALL ROT-MATRIX(1,R) 

CALL MATRIX-MULT(3,3,RI73,1 ,PQ-LK) 
DO K=1,3 

ENDDO 
RETURN 
END 

CALL MATRIX_INV(3,R7W 

P-L(I,K)=P-LK(K, 1) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROU'TTNECAL Gu * - 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CAL-GuW) 
COMMON/ARR_Gu/Gu(6,3,6) 
COMMON/ARR-WARM( 6,3) 
PUT Gu IN MATRIX FORM 
S I M I L A R  REASON AS IN SUBROUTINE P-LINK FOR THE 

C 
C 
C FOLLOWING STEPS 

J=N+1 
IF(N .EQ. 6)J=1 
Gu(N,1,1)=1. 
Gu(N, 1,2)=0. 
Gu(N, 1,3)=0. 
Gu(N, 1,4)=0. 
Gu(N, 1,5)=ARM(J,3) 
Gu(N, 1,6)=-ARM(J,2) 
Gu(N,2,1)=0. 
Gu(N,2,2)= 1. 
Gu(N,2,3)=0. 

Gu(N,2,4)=-ARM( J,3) 
Gu(N,2,5)=0. 
Gu(N,2,6)=ARM( J, 1) 
Gu(N,3,1)=0. 
Gu(N,3,2)=0. 
Gu(N,3,3)= 1. 
Gu(N,3,4)=ARM(J,2) 
Gu(N,3,5)=-ARM(J, 1) 
Gu(N,3,6)=0. 
RETLTRN 
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END 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE CAL-Huu 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

C 
C 

C 

C 

SUBROUTINE CAL-Huu(N) 
COMMON/ARR-Huu/Huu(6,3,6,6) 
COMMON/ARR_R/ARM( 6,3) 
DATA Huu/648*0./ 
PUT Huu IN MATRE FORM 
SIMILAR REASON AS BEFORE 
J=N+ 1 

IF(N .EQ. 6)J=1 
Huu(N, 1,4,5)=ARM(J,2) 
Huu(N, 1,4,6)=ARM(J,3) 
Huu(N, 1,5,5)=-ARM(J,l) 
Huu(N, 1,6,6)=-ARM(J, 1 )  

HUU (N, 2,4,4) =-ARM (J,2) 
Huu(N,2,4,5)=ARM(J, 1) 
Huu(N,2,5,6)=ARM(J,3) 
Huu(N,2,6,6)=-ARM(J,2) 

Huu(N,3,4,4)=-ARM(J,3) 
Huu(N,3,4,6)=ARM(J, 1 )  
Huu(N,3,5,5)=-ARM(J,3) 
Huu(N,3,5,6)=ARM(J,2) 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL-G - Hpqhi * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
C 
C 
C 
C 

+ 

+ 

SUBROUTINE CAL - -  G Hpqhi(N,XP,YP,ZP,ZGpghi,ZHpqhi) 
REAL L3L 
DIMENSION ZGp_LK(3,3),ZHpp - LK(3,3,3),ZGpqhi(3,3), 

COMMON/CGpHpp/L3,PSI 1 ,PSI2,S 1 ,S2,C 1 ,C2,T2,TETA 1, 

COMMON/DIRECT/DGp(6,3,3),DHpp(6,3,3,3) 

ZHpqW3,3,3) 

mA2 

PI=ACOS(- 1.) 

L3=SQRT(XP**2+YP**2+ZP**2) 
PSI2=ACOS( ZP/L3) 
TETA2=PI+PSI2 
L=L3*SIN(PSI2) 
PSIl=ASIN(YP/L) 
TETA 1 =PI+PSI 1 
Sl=SIN(PSIl) 
S2=SIN(PSI2) 
C1=COS(PSI 1) 
c2=cos(psI2) 
T2=TAN(PSI2) 
TWO DIFFERENT WAYS TO DETERMINE Gpqhi AND Hpghi 
THIS PROGRAM USED THE RESULTS FROM INDIRECT, BUT 

CALL CAL-DR-Gp(N,XP,YP,ZP,DGp) 
CALL CAL-DR-Hpp(N,XP,YP,ZP,DGp,DHpp) 
CALL INDIRECT(N,ZGpqhi,ZHpjhi) 
RETURN 
END 

THE RESULTS FROM DIRECT SERVED AS A CHECK 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE INDIRECT 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

SUBROUTINE INDIRECT(N,ZGpqhi,ZHpqhi) 
THIS SUBROUTINE DETERMINES Gpqhi AND Hpqhi 

DIMENSION Gs(3,3),Hss(3,3,3),ZGpqhi(3,3), 

COMMON/G_Hpqhi/Gpqhi(6,3,3),Hpqhi(6,3,3,3) 
CALL CAL-Gs(N,STl ,ST2,CT1 ,CT2,Gs,ZGpghi) 
CALL CAL - Hss(N,STl,ST2,CTl ,CT2,Gs,Hss,ZHpghi) 
CALL CHG - DIMLO(N,3,3 ,ZGpqhi,3,3,3,ZHpqhi,Gpghi, 

RETURN 
END 

C 
C INDIRECl-LY 

+ ZHpghi(3,3,3) 

+ Hpqhi) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* 
* 

* 
* SUBROUTINE CAL-Hphiqp 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

SUBROUTINE CAL-Hphiqp(N,ZGpghi,ZHpghi) 
THIS SUBROUTINE CALCULATES THE INVERSE OF Gpqhi 

COMMON/G-Hp hiqp/G phiq( 6,3,3) ,Hphigp( 6,3,3,3) 
DIMENSION ZGpqhi(3,3),ZHpghi(3,3,3),ZGphiq(3,3), 

+ TZGphiq(3,3),XX(3,3,3),YY (3,3,3),ZZ(3,3,3), 

C 
AND Hpqhi 

+ ZHphiqp(3 ,3,3) 
CALL MATFUX_INV(3,ZGpghi,ZGphiq) 
CALL TRANSPOSE (3,3 ,ZGphiq,TZG phiq) 
CALL GENERAL_DOT(3,3 ,ZGphiq,3 ,ZHpghi,XX) 
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DO I=1,3 
CALL NN - DOT - "N(3,3,1,3,TZGphiq,XX,YYj 
CALL N" - DOT - NN(3,3,1,3,YY,ZGphiq,ZZ) 
DO J=1,3 

DO K=1,3 
ZHphisp(I,J,K)=-ZZ(I,J,K) 

ENDDO 
ENDDO 

ENDDO 
CALL CHG-DIMLO(N,3,3,ZGphiq,3,3,3,3,ZHphiqp,Gphiq, 

RETURN 
END 

+ HPhiJP) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL-DR-Gp * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL-DR-Gp(N,XP,YP,ZP,Gp) 
THIS SUBROUTINE IS NOT ACTUALLY USED BUT ONLY 

REAL L3L 
DIMENSION Gp(6,3,3) 
COMMON/CGpHpp/L3,PSIl ,PSI2,S 1,S2,C1 ,C2,T2,TETA 1, 

+ mA2 

C 
C SERVES AS A CHECK 

A 1 =(L3**2)*"2 
D2DXP=XP/A1 
D2DYP=YP/Al 
D2DZP=(ZP*C2-L3)/( (L3 * *2)* S2) 
A2=C 1 *(L3*S2)**2 
DlDXP=-XP*S 1/A2 
DlDYP=&3*S2-YP*Sl)/A2 
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DlDZP=O 
D3DXP=XP/L3 
D3DYP=YP/L3 
D3DZP=ZP/L3 
Gp(N,l,l)=DlDXP 
Gp(N,2,1)=D2DXP 
Gp(N,3,1)=D3DXP 
Gp(N, 1,2)=D lDYP 
Gp(N,Z,Z)=D2DYP 
Gp(N,3,2)=D3DYP 
Gp(N, 1,3)=D 1DZP 
Gp(N,2,3)=D2DZP 
Gp(N,3,3)=D3DZP 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE CAL-DR-Hpp * 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CAL-DR-Hpp(N,XP,YP,ZP,Gp,Hpp) 
C THIS SUBROUTINE IS ALSO NOT USED BUT SERVES AS A 
C CHECK 

REAL L3& 
DIMENSION Gp(6,3,3),Hpp(6,3,3,3) 
COMON/CGpHpp/L3,PSI 1 ,PSI2,S 1 ,S2,C 1 ,C2,T2,TETA 1, 

+ TETA2 
A2=C 1 *(L3*S2)**2 
D23D2XP=(L3* *2-)(9**2)/L3 **3 
D23DXPDYP=-XP*YP/L3**3 
D23DXPDZP=-XP*ZP/L3**3 
D23DYPDXP=D23DXPDYP 
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+ 

+ 

+ 

+ 

+ 

D23D2YP=((L3* *2)- (Yp**2))/L3 * *3 
D23DYPDZP=-YP*ZP/L3**3 
D23DZPDXP=D23DXPDZP 
D23DZPDYP=D23DYPDZP 
D23D2ZP=( (L3 **2)- (ZP**2))/L3 **3 
A4=(L3* *4)* (T2* *3) 
D22D2XP=(((L3*T2)**2)-2*((XP*n)**2)- 

(XP/C2)**2)/A4 
D22DXPDYP=(-XP*YP*( (( l/C2)**2)+2*(T2**2)))/A4 
M=(L3**4)*(T2**2)*S2 
D22DXPDZP=(-2*XP*ZP*S2*T2-XP*ZP/C2 

+L3*XP/( C2**2))/A5 
D22D2YP=( (L3*T2)**2-2*( (YP*T2) **2)-W/C2)**2)/A4 
D22DYPDXP=D22DXPDYP 
D22DYPDZP=(-2*YP*ZP*S2*T2-V*( zP*C2- 

L3)/(C2**2))/A5 
D22DZPDXP=D22DXPDZP 
D22DZPDYP=D22DYPDZP 
D~~D~ZF'=((S~*L~**~)*(-GP(N,~,~)*ZP*S~+C~-ZP/L~)- 

(ZP*C~-L~)*(~*ZP*S~+GP(N,~,~)*C~*L~* *2)) 
/((S2*L3**2)**2) 

A6=2*C1 *S2**2 
A7=XP*C1 
A8=XP*S 1 
A9=2*C1 *C2*S2*L3**2 
A10=S 1 *(S2*L3)**2 
A1 l=Sl*S2**2 
A 12=L3 *C2 
A13=L3*S2-YP*S 1 
D21D2XP=-(A2*(Gp(N,l ,l)*A7+Sl)-A8*(XP*A6+ 

Gp(N,2,1)*Ag-Gp(N,l,l)*A 10))/A2**2 
D2 1DXPDYP=-(A2*Gp(N9 1,2)*A7-A8*(YP*A6+ 
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+ Gp(N72,2)*A9-Gp(N, 172)*A10))/A2**2 
D21DXPDZP=-(A2*Gp(N,173)*A7-A8*(ZP*A6+ 

+ Gp(N,2,3)*A9-Gp(N7 1,3)*A 10))/A2* *2 
D21D2YP=(A2*(YP*S2&3+A 12*Gp(N,2,2)-S 1- 

+ Gp(N, 1,2)*YP*C 1)-A 13* (YP*A6+Gp(N72,2)*A9- 
+ Gp(N, 1,2)*A 10))/A2**2 

D21DYPDZP=(A2*(ZP*S2/L3+A 12*Gp(N,2,3)- 
+ Gp(N,1,3)*YP*Cl)-A13*(ZP*A6+ 
+ GP(N,~,~)*A~-GP(N,~,~)*A~O))/A~**~ 

D2 1 D2ZP=O 
D2 lDZPDXP=O 
D2 lDZPDYP=O 
D21DYPDXP=D21DXPDYP 
Hpp(N71,1,1)=D21D2XP 
Hpp(N, 1,172)=D2 1 DXPDYP 
Hpp(N, 1,1,3)=D2 lDXPDZP 
Hpp(N71,2,1)=D21DYPDXP 
Hpp(N, 1,2,2)=D2 1 D2YP 
Hpp(N, 1,2,3)=D2 lDYPDZP 
Hpp(N, 173,1)=D21DZPDXP 
Hpp(N, 1,3,2)=D2 lDZPDYP 
Hpp(N,1,3,3)=D21D2ZP 

* 
Hpp(N,2,1 ,l)=D22D2XP 
Hpp(N72,1,2)=D22DXPDYP 
Hpp(N,2,1,3)=D22DXPDZP 
Hpp( N ,2,2,1 )=D22DYPDXP 
Hpp(N72,2,2)=D22D2YP 
Hpp(N72,2,3)=D22DYPDZP 
Hpp(N72,3,1)=D22DZPDXP 
Hpp(N,2,3,2)=D22DZPDYP 
Hpp(N72,3,3)=D22D2ZP 
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* 
Hpp(N,3,1 ,l)=D23D2XP 
Hpp(N,3,1,2)=D23DXPDYP 
Hpp(N,3,1,3)=D23DXPDZP 
Hpp(N,3,2,1)=D23DYPDXP 
Hpp(N,3,2,2)=D23D2YP 
Hpp(N,3,2,3)=D23DYPDZP 
Hpp(N,3,3,1)=D23DZPDXP 
Hpp(N,3,3,2)=D23DZPDYP 
Hpp(N,3,3,3)=D23D2ZP 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL-Gs * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL-Gs(N,STl ,ST2,CT1 ,CT2,Gs,Gphi) 

C THIS SUBROUTINE CALCULATES THE G-FUNCTION FOR 
C EACH LEG 

REAL L3 
COMMON/CGpHpp/L3,PSI1 ,PSI2,S 1 ,S2,C 1 ,C2,TZ,TETA 1, 

COMMON/TETA-UST( 6) ,cT( 6) JU3 (6) 
DIMENS ION Gs( 3,3),R( 3,3) ,Gp hi( 3,3) 
WRITE( 1 ,*)'ACTUATOR LENGTH L3=',L3 
ST 1 =SIN(TETA 1 ) 
ST2=SIN(TETA2) 
CTl=COS(TETA 1) 
CI'2=COS(TETA2) 
ST(N)=ST2 
CT(N)=CT2 
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RL3 (N)=L3 
Gs( l,l)=-L3*STl*ST2 
Gs( 1,2)=L3*CTl *CT2 
Gs( 1,3)=CT 1 * ST2 
Gs(2,l)=L3*CTl *ST2 
Gs(2,2)=L3*STl *CT2 
Gs(2,3)=STl *ST2 
Gs(3,1)=0 
Gs(3,2)=L3*ST2 
Gs(3,3)=-CT2 
TRANSFORM THE G-FUNCTION FROM THE LEG FRAME TO THE C 

C BASE FRAME 
CALL ROT-MATRIX(N,R) 
CALL MATlUX-MULT(3,3,R,3,3 ,Gs,Gphi) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . * 
* 
* 

* 
* SUBROUTINE CAL - Hss 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

SUBROUTINE C AL-Hss( N,ST 1 ,ST2,CT 1 ,CT2,Gs,Hss ,Hp hi) 
C THIS SUBROUTINE CALCULATES THE H-FUNCTION FOR 
C EACH LEG 

REAL L3 
DIMENSION Hss(3,3,3) ,Gs(3,3),R(3,3) ,Hphi(3,3,3) 
COMMON/CGpHpp/L3,PSI 1 ,PSI2,S 1 ,S2,C 1 ,C2,T2,TETA 1, 

+ E T A 2  

HSS( l , l , l )=-G~(2,1)  
HSS( 1,1,2)=-G~(2,2) 
Hss( 1,1,3)=-G~(2,3) 
HSS( 1,2, l)=Hss( 1,1,2) 
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HSS( 1,2,2)=Hss( 1,1,1) 
HSS( 1,2,3)=CTl *CT2 
HSS( 1,3, l)=Hss( 1,1,3) 
HSS( 1,3,2)=Hss( 1,2,3) 
Hss(2,1,1)=Gs( 1 , l )  
Hss(2,1,2)=Gs( 1,2) 
Hss(2,l ,3)=Gs( 1,3) 
H~~(2 ,2 , l )=Hs~(2 ,1 ,2)  
H~s(2,2,2)=Hs~(2,1,1) 
Hss(2,2,3)=STl *CT2 
Hss(2,3,l)=Hss(2,1,3) 
H~~(2,3,2)=Hss(2,2,3) 
Hss(3,2,2)=L3*CT2 
Hss(3,2,3)=ST2 
HS s (3,3,2) =Hs S( 3,2,3) . 

C TRANSFORM THE H-FUNCTION FROM THE LEG FRAME TO THE 
C BASE FRAME 

CALL ROT-MATFUX(N,R) 
CALL GENERAL-DOT( 3,3 ,R,3 ,Hss,Hp hi) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINECAL G Hphi uu * - -  - 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CAL-G-Hphi-uu 
C THIS SUBROUTINE TRANSFERS THE G- AND H-FUNCTIONS 
C 
C COORDINATES 

TO REFERENCE THEM TO THE COMMON PLATFORM 

DIMENSION ZGu( 3,6),ZGpq hi( 3,3),ZHuu( 3,6,6), 
+ ZHpqhi(3,3,3),ZGphi - u(3,6), 
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+ 
+ 
+ 

C 
C 

+ 

+ 

C 
C 

+ 

ZHphi_uu(3,6,6),TGu(6,3),GpHuu(3,6,6), 
TGu_DOT_Hphi(3,6,3),TGuHphiGu(3,6,6), 
ZIGpghi(3,3) ,ZGphig( 3,3),ZHphigp( 3,3,3) 

COMMON/ARR_Gu/Gu(6,3,6) 
COMMON/ ARR-Huu/Huu( 6,3,6,6) 
COMMON/G-Hpghi/Gpghi(6,3,3),Hpghi(6,3,3,3) 
COMMON/ARRqhi-uu/Gphi-u( 6,3,6),Hphi_uu( 6,3,6,6) 
COMMON/G_Hphigp/Gphig(6,3,3),Hphiqp( 6,3,3,3) 
DO I=1,6 
SET GU AND Gp INTO 2-D ARRAY 
SET HUU AND Hpp INTO 3-D ARRAY 
CALL CHG~DIMHI(I,O,Gu,Huu,ZGu,ZHuu) 
C A L L  CHG_DIMHI(I,3,Gphig,Hphigp,ZGphig,ZHphigp) 
CALL T"SPOSE(3,6,ZGu,TGu) 
CALL MATRIX - MULT(3,3,ZGphi~,3,6,ZGu,ZGphi-u) 
CALL GENERAL_DOT(3,3 ,ZGphig,6,ZHuu,GpHuu) 
DO J=1,3 
CALL NN-DOT - N"( 6,3 ,J, 3 ,TG u ,ZHphigp, 

CALL NNN-DOT-NN( 6,3J,3,TGu-DOT-Hphi,ZGu, 

CALL ADDT(3,6,J,GpHuu,TGuHphiGu,ZHphi_uu) 
EN-DDO 
SET Gphi-u INTO 3-D ARRAY AND Hphi - uu INTO 4-D 

CALL CHG-DIMLO(I,3,6,ZGphi_u,3,6,6,ZHphi-uu, 

TGu-DOT-Hphi) 

TGuHphiGu) 

ARRAY 

Gphi-u ,Hphi-uu) 
ENDDO 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE GET-CONST * 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GET~CONST(Izz1,Izz2,Ixx2,Ixx3,Iyy3, 

THIS SUBROUTINE CALCULATES THE INERTIA TENSORS FOR 
+ M23,M34,Lc,Lr) 

C 
C EACH LINK 
C REFERENCED TO THEIR RESPECTIVE LOCAL COORDINATES 

REAL Izz 1 ,Izz2,Ixx2,Ixx3,Iyy3 ,M 12,M23,M34,Lc,Lr 
READ(40,*) M 12,M23,M34,R,Lc,Lr 
IZZ l=(M 12*R**2)/2. 
1~~2=(M23*LC**2)/12. 
Ixx2=Izz2 
Ix~3=(M34*Lr**2)/12. 
Iy y 3=1xx3 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE CAL INERTIA * - 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CAL - INERTIA(N,Izz1,Izz2,Ixx2,Ixx3,Iyy3, 

THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA 
MATRIX FOR EACH LEG EXPRESSED IN THE RESPECTIVE 

+ M23,M34,Lc,Lr,Iphi - LK) 
C 
C 
C LEG FRAME 

REAL Izzl ,Izz2,Ixx2,Ixx3,Iyy3,M23,M34,Lc,Lr, 

COMMONfIETA-UST2 (6),CT2( 6),RL3 (6)  
+ Iphi-LK( 6,3,3) 



Iphi - LK(N, 1 , l)=Izz 1 +M23*(Lc*ST2(N)/2.)**2+ 
+ Ixx~*ST~(N)**~+M~~*(RL~(N)-L~/~.)**~* 
+ ST~(N)**~+IXX~*ST~(N)* *2 

Iphi - LK(N,~,~)=M~~*(L~/~.)**~+Izz~+M~~*(RL~(N)- 

Iphi_LK(N,3,3)=M34 
RETURN 
END 

+ W2.) * *2+Iyy 3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL-POW9hi * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ 
C 
C 
C 

+ 

SUBROUTINE CAL-POW~hi(N,Ixx2,Ixx3 ,Iy y 3 ,M23 ,M34, 

THIS SUBROUTINE CALCULATES THE INERTIA POWER 
Lc,Lr,Pphi-LK) 

ARRAY FOR EACH LEG EXPRESSED IN THE RESPECTIVE 
LEG FRAME 

REAL Ixx2 ,Ixx3 ,Iyy3 ,M23,M34,Lc,Lr 
DIMENSION Pphi-LK( 6,3,3,3) 
COMMONATTA_US2(6) ,C2( 6),RL3( 6) 
R=RL3 (N)-W2. 
S C =S 2 (N) * C2 (N) 
Pphi - LK(N, 1,1,2)=M23*SC*(Lc/2.)**2+2.*Ixx2*SC+ 

Pphi-LK(N, 1,1,3)=M33*R*S2(N)**2 
Pphi - LK(N,~,~,~)=M~~*SC*(LC/~.)**~+M~~*SC*R**~ 
Pphi - LK(N,1,2,3)=-Iyy3*S2(N) 
Pphi-LK(N, 1,3,1)=M34*R*S2(N)**2 
Pphi - LK(N,~,~,~)=-M~~*SC*(LC/~.)**~-IX~~*SC- 

Pphi - LK(N,2,1,3)=Ixx3*S2(N) 

M34*R**2*SC+2. *Ixx3*SC 

M~~*SC*R**~-IXX~*SC + 
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Pphi - LK(N72,2,3)=M34*R 
Pphi - LK(N72,3,2)=M34*R 
Pphi - LK(N,3,1 , l)=-M34*R*S2(N)**2 
Pphi_LK(N,3, 172)=-Ixx3*S2(N) 
Pp hi-LK (N,3,2,1) =Iyy3 * S2 (N) 
Pphi - LK(N73,2,2)=-M34*R 
RETURN 
END 

SUBROUTLNECAL - -  Iuu Puuu 

C 
C 
C 
C 

. . . . .  . . . .  
SUBROUTINECAL - -  Iuu Puuu 
THIS SUBROUTINE CALCULATES THE TOTAL EFFECTIVE 

INERTIA MATRIX AND INERTIA POWER ARRAY FOR THE 
SIX LEGS REFERENCED TO THE COMMON PLATFORM 
COORDINATES' 

COMMON/ARRThi - uu/Gphi-u(6,3,6),Hphi-~u( 6,3,6,6) 
COMMON/SINERT1Aghi/SIphi - LK(6,3,3) 
COMMON/POWERqhdFphi - LK(6,3,3,3) 
COMMON/SINERTIA-u/SIuu(6,6,6) 
COMMONPOWER~u/Puuu(6,6,6,6) 
COMMON/ARR - Gu/Gu(G,3,6) 
COMMON/ ARR - Huu/Huu( 6,3,6,6) 
COMMONIG - Hphiqp/Gphiq(6,3,3),Hphigp( 6,3,3,3) 
DIMENSION ZGphi-u( 3,6),TGp hi - u( 6,3) ,ZHp hi-uu( 3,6,6), 

TZGphi - u(6,3),ZSIphi_LK(3,3), 
ZPphi-LK( 3,3 , 3) ,ZHuq  hi (6,3,3) ,ZS Iuu (6,6) , 
ZPuuu(6,6,6),ZGphiq( 3,3),ZHphiqp(3,3,3), 
TZGphigp(3,3),W(3,3),WW(3,6,6),X(3,3,3), 
TZGp h i g (  3,3),ZGu( 3,6),ZHuu( 3,6,6) ,TGu( 6,3) , 
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+ Y(3,3,3>,YY(3,3,3),X_YY(3,3,3),V(3,6,3), 
+ VV(3,6,6),WV(3,6,6) 

DO I=1,6 
C SET 3-D ARRAY INTO 2-D AND 4-D ARRAY INTO 3-D 

CALL CHG - DIMHI(I,O,Gphi-u,Hphi-uu,ZGphi-u,ZHphi-uu) 
CALL CHG-DIMHI( I, 3 , SIphi-LK,Pphi - LK,ZSIphi-LK , 

CALL CHG~DIMHI(I,O,Gu,Huu,ZGu,ZHuu) 
CALL CHG-DIMHI(I73,Gphiq,Hphiqp,ZGphiq,ZHphigp) 
CALL CALJ(3 ,6,ZGphi-u,TZGphi-u,3,3,ZSIphi~LK7ZSIuu) 
CALL TRANSPOSE(3,3,ZGphiq7TZGphiq) 
CALL MATRIX-MULT(3,3,ZS1phi~LK73,3,ZGphig,W) 
CALL GENERAL-DOT( 3,3,W ,6,ZHuu,WW) 
CALL GENERAL_DOT(3,3 ,ZSIphi_LK,3,ZHphiqp,X) 
CALL TRANSPOSE(3,6,ZGu7TGu) 

+ ZPphi-LK) 

DO J= 1,3 
CALL NN_DOT_NNN(3,3, J,3 ,TZGphiq,ZPphi-LK,Y) 
CALL NNN-DOT - NN(3,3,J73,Y,ZGphiq,YY) 

ENDDO 
DO J=1,3 
CALL ADDT(3,3,J7X,YY,X-YY) 
CALL NN-DOT-NNN (6,3, J,3 ,TG u,X - YY, V) 
CALL NNN-DOT-NN (6,3 , J,3 , V,ZG u,VV) 
CALL ADDT(3,6,J,WW, W , WV) 

ENDDO 
CALL GENERAL-DOT( 6,3,TZGphi_u76, WV,ZPuuu) 
CALL CHG~DIML0(1,6,6,ZS1uu76,6,6,~uuu,S1uu,Puuu) 

ENDm 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINECAL - I * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL-I(I,J,A,TA,K,L,B,C) 
THlS SUBROUTINE SERVES AS A GENERAL EXPRESSION TO C C 

CALCULATE THE EFFECTIVE INERTIA MATRIX 
DIMENSION A(I,J),TA(6,6),B(K,L),C(J,J),TAS(6,6) 
CALL TRANSPOSE(I,J,A,TA) 
CALL MATRIX - MULT(J,I,TA,K,L,B,TAS) 
CALL MATRIX - MULT(J,L,TAS,I,J,A,C) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

* * 
* 
* 

SUBROUTINE PFORM-INERTIA * 
'* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE PFORM - INERTIA(RR,PL-G,PF-Iuu) 
THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA C 

C MATRIX OF THE PLATFORM 
COMMONAlUN-P-G/R( 3,3) 
REALM 
DIMENSION PF-Iuu(6,6),PL-I(3,3),PL-G( 3,3), 

+ PP(3,3),TR(3,3) 
M=2250. 
PF - IUU( l,l)=M 
PF - Iuu(2,2)=M 
PF - Iuu(3,3)=M 
PL - I( 1,1)=(M*RR**2)/4. 
PL - I(2,2)=PL - I(1,l) 
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PL - 1(3,3)=(M*RR**2)/2. 
C TRANSFORM Ixx,Iyy ,4ND I u  TO GLOBAL COOR 

CALL MATFUX-MULT( 3,3,R73,3,PL-I,PP) 
CALL TRANSP0SE(3,3,R7TR) 
CALL MATRIX-MULT( 3,3,PP,3,3 ,TR,PL-G) 
DO K=1,3 

DO J=1,3 

ENDDO 
ENDDO 
RETURN 
END 

PF - IUU (K+3 ,K+3)=PL-G( K, J) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE PFORM-INEPOW * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE PFORM-INEPOW (P-luu,P-uuu) 
THIS SUBROUTINE CALCULATES THE INERTIA POWER C 

C ARRAY OF THE PLATFORM 
DIMENSION P - 1~~(3 ,3) ,P-~~u(6 ,6 ,6)  . 

DO I=4,6 
J=I-3 
P - U U U ( ~ , I , ~ ) = P  - luu(J3) 
P - UUU(~ , I ,~ )=-P-~UU(J ,~ )  
P - U U U ( ~ , I , ~ ) = - P - ~ U U ( J , ~ )  
P-uuu(S,I,~)=P - lUu(J,l) 
P - UUU(~ , I ,~ )=P-~UU(J ,~ )  
P - UUU(~,I,~)=-P-IUU(J, 1) 

ENDDO 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE1 - STAR - uu * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE I - STAR-uu(PF - Iuu,TOT-Iuu) 
THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA 

MATRIX OF THE GENERALIZED STEWART PLATFORM 
C 
C 
C REFERENCED TO THE PLATFORM 

COMMON/SINERTIA - u/SIuu(6,6,6) 
DIMENSION STOT - Iuu(6,6),PF-Iuu(6,6),TOT - Iuu(6,6) 
DO I=1,6 

DO J=1,6 
STOT - Iuu(I,J)=O. 
DO K=1,6 

ENDDO 
TOT_Iuu(I,J)=STOT - Iuu(I,J)+PF-Iuu(I,J) 

STOT-IUU(I,J)=SIUU(K,I,J)+STOT - Iuu(I,J) 

ENDDO 
ENDm 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE P-STAR-uuu * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE P-STAR - uuu(PF-Puuu,TOT-Puuu) 
THIS SUBROUTINE CALCULATES THE INERTIA POWER 
ARRAY OF THE GENERALIZED STEWART PLATFORM 

C 
C 
C REFERENCED TO THE PLATFORM 

COMMON/POWER - u/Puuu(6,6,6,6) 

183 
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DIMENSION PF~Puuu(6,6,6),STOT~Puuu(6,6,6), 
+ TOT_Puuu(6,6,6) 

DO I=1,6 
DO J= 1,6 

DO K=1,6 
STOT - Puuu(I, J,K)=O. 
DO L=1,6 

ENDDO 
STOT - Puuu(I,J,K)=Puuu(L,I,J,K)+STOT - Puuu(I,J,K) 

TOT Puuu(I,J,K)=STOT Puuu(I,J,K)+PF Puuu(I,J,K) - - - 
ENDDO 

ENDDO 
ENDDO 

RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 

* SUBROUTINE CAL G p u  * - 
* * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL - GQ_U 
THIS SUBROUTINE DOES THE EXTRACTION OF THE C 

C G-FUNCTION REFERENCED TO THE DESIRED JOINT SET OF 
C COORDINATES 

COMMON/ARRqhi - uu/Gphi-u(6,3,6),Hphi - uu(6,3,6,6) 
COMMON/ARR_GQ_U/G~U(~,~) 
WRITE( 1 ,*)'Gpu' 
DOI=1,6 
DO J=1,6 

ENDDO 
WRITE( 1,99)(GQ_U(I,J),J= 1,6) 

G~_u(I,J)=Gphi-u(1,3,J) 
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ENDDO 
99 FORMAT(X,6(FlO.3,2X)) 

RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL - HLUU * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL-Hquu 
THIS SUBROUTINE DOES THE EXTRACTION OF THE C 

C H-FUNCTION REFERENCED TO THE DESIRED JOINT SET OF 
C COORDINATES 

COMMON/ARRqhi - uu/Gphi-u(6,3,6),Hphi - uu(6,3,6,6) 
COMMONIARR - Hq-uu/H~uu(6,6,6) 
WRITE( l,*)'Hq-uu' 
DO I=1,6 

WRITE( 1 ,*)'PLANE=',I 
DO J=1,6 

DO K=1,6 
Hquu(IJ,K)=Hphi - uu(I,3J,K) 

ENDDO 
WRITE( 1,99)(HQ - UU(I,J,K),K= 1,6) 

ENDDQ 
ENDDQ 

99 FORMAT(X,6(F 10.3,2X)) 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 

* * SUBROUTINE CAL-Iqq-Pqqq 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE C AL-IqqPqqq 
THIS SUBROUTINE CALCULATES THE EFFECTIVE INERTIA 

MATRIX AND INERTIA POWER ARRAY REFERENCED TO 
THE DESIRED JOINT SET OF GENERALIZED COORDINATES 

C 
C 
C 

COMMON/ARR-Gq-u/Gq-u (6,6) 
COMMON/ ARR-Hpuu/Hpuu( 6,6,6) 
COMMON/Iuu/TOT-Iuu(6,6) 
COh4MON/Puuu/TOT~Puuu(6,6,6) 
COMMON/Iqq/ST AR-Iqq( 6 , 6) 
COMMON/Pqqq/P_STAR_qqq(6,6,6) 
DIMENSION Gu-q( 6,6) ,TGu-q( 6,6) ,EE( 6,6,6) ,FF( 6,6,6), 

+ GG(6,6,6>,XX(6,6,6),YY (6,6,6),Hu_qq(6,6,6), 
+ F(6,6,6) 

CALL MATRIX-INV(~,GQ_U,GU_~) 
CALL CAL-I( 6,6,Gu-q,TGu-q,6,6,TOT-Iuu,STAR-Iqq) 
WRITE( 1 ,*)‘I*qq’ 
DO II=1,6 

WRITE( 1 ,*)(STAR-IQQ(II,JJ),JJ= 1,6) 
ENDDO 

CALL CAL_Hu-qq(Gu_q,TGu_q,Hu - qq> 
CALL GENERAL-DOT( 6,6,TG u-q, 6,TOT-PuuuJE) 
CALL GENERAL-DOT(6,6,STAR-Iqq,6,Hq-uu,FF) 
WRITE( 1 ,*)‘P*qqq’ 
DO I=1,6 

WRITE( 1 ,*)‘PLANE=’,I 
CALL SUBT(6,I7EE,FF,GG) 
CALL NN-DOT-N”(6,6,1,6,TGu - q,GG,XX) 



CALL NNN - DOT - NN(6,6,1,6,XX,Gu_q,P_STAR - qqq) 
DO J=1,6 . 

ENDDO 
WRITE( l,*)(P-STAR - QQQ(I,J,K),K=1,6) 

ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CAL - Hu-qq * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  

SUBROUTINE CAL-Hu-qq(Gu-q,TGu - q,Hu - qq) 
THIS SUBROUTINE CALCULATES THE DIRECT TRANSFER OF C 

C Gku AND H ~ u u  
COMMON/ARR-Hq-u u/Hq-uu (6,6,6) 
DIMENSION Gu-q(6,6),TGu-q(6,6),GH(6,6,6),BB(6,6,6), 

CALL GENERAL - DOT(6,6,Gu_q,6,Hkuu,GH) 
DO 1=1,6 
CALL NN_DOT_NNN(6,6,1,6,TGu_q,GH,BB) 
CALL NNN-DOT-NN(6,6,1,6,BB7Gu-q,CC) 
DO J=1,6 

+ CC(6,6,6),Hu_qq(6,6,6) 

DO K=l,6 

ENDDO 
Hu-qq(I,J,K)=-CC(I,J,K) 

ENDDO 
ENDDO 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CHG-DIMHI * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CHG-DIMHI(M,N,A,B,C,D) 

C 
C 
C 3-DIMENSIONAL ARRAY 

THlS SUBROUTINE CHANGES 3-DIMENSIONAL ARRAY TO 
2-DIMENSIONAL MATRIX AND 4-DIMENSIONAL ARRAY TO 

DIMENSION A( 6,3,6-N),B( 6,3,6-N,6-N),C( 3,6-N), 
+ D(3,6-N76-N) 

DO J= 1,3 
DO K= 1,6-N 

C(J,K)=A(M,J,K) 
DO L=1,6-N 

D( J,K,L)=B (My J,K,L) 
ENDDO 

ENDDO 
ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CHG-DIMLO * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CHG-DIMLO(II,JJ,KK,A,LL,MM,NN,B,C,D) 
THIS SUBROUTINE CHANGES 2:DIMENSIONAL MATRIX TO C 

C 3-DIMENSIONAL ARRAY AND 3-DIMENSIONAL ARRAY TO 
C 4-DIMENSIONAL ARRAY 

DIMENSION A(JJ,KK),B(LL,MM,NN),C(6,JJ,KK),D(6,LL,MM,NN) 
DO J=l,JJ 
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DO K= 1,KK 
C(II,J,K)=A(J,K) 
DO L=1,” 

ENDDO 
D(II,J,K,L)=B(J,K,L) 

ENDDO 
ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE MATRIX-NV 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE MATRIX-INV(N,A,AI) 
THIS SUBROUTINE FINDS THE NVERSE OF ANY SQUARE N C 

C BY N MATRIX 
REAL A(N,N),AI(N,N) 
DIMENSION INTER( 15,2) 

C 
DO I= 1 ,N 

DO J=l,N 

ENDDO 
AI(J,I)=A(J,I) 

ENDDO 
C 

DO 12 K=l,N 
JJ=K 
IF (K.NE.N) THEN 

KPl=K+l 
BIG=ABS(AI(K,K)) 
DO 5 I=KPl,N 



1 9 0  

AB=ABS(AI(I,K)) 
IF (BIG.LT.AB) THEN 

! SEARCHING FOR LARGEST PIVOT 

BIG=AB 
JJ=I 

ENDIF 
5 CONTINUE 

ENDIF 
C 

XNTER(K,l)=K 
INTER( K,2)= JJ 
IF (JJ.NE.K) THEN 

DO 8 J=l,N 
TEMP=AI(K,J) 
AI(K,J)=AI(JJ,J) ! INTERCHANGE ROWS 
AI( JJ,J)=TEMP 

8 C0"UE 
ENDIF 

C 
DO 10 J=l,N 

IF (J.NE.K) THEN 
TEMP=AI(K,J)/AI(K,K) 
AI(K,J)=TEMP 

ENDIF 
10 CONTINUE 

TEMP= 1 ./AI(K,K) 
AI( K,K)=TEMP 
DO 11 I=l,N 

IF (1.NE.K) THEN 
DO J=l,N 

IF (J.NE.K) THEN 
==AI( I, J)- AI(K, J) * AI(1,K) 
AI(I,J)=TEMP 
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11 
C 

12 

13 

ENDIF 
ENDDO 

CONTWUE 
ENDIF 

DO 12 I=l,N 
IF (1.NE.K) THEN 

TEMP=- AI(I,K)*AI(K,K) 
AI(I,K)=TEMP 

ENDIF 
C 0 " u E  
DO 13 L=l,N 

K=N-L+ 1 
KROW=INTER(K, 1) 
IRO W =INTER (K ,2) 
IF (KROW.NE.IR0W) THEN 

DO I=l,N 
TEMP= AI(1,KROW) 
AI(I,KROW)=AI(I,IROW) 
AI(I,IROW)=TEMP 

ENDDO 
ENDIF 

CONTINUE 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* 
* 

* 
* SUBROUTINE GENERAL-DOT 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 

SUBROUTINE GENERAL - DOT(N,NC,AN,B,AB) 
THIS SUBROUTINE PERFORMS THE GENERALIZED DOT C 
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C 
C ARRAY B 

PRODUCT OFTHE N BY NC MATRIX A AND NC BY M BY M 

DIMENSION AB(N,M,M),A(N,NC),B(NC,M,M) 
DO I=l,N 

DO J=l,M 
DO K=l,M 

AB(I,J,K)=O 
DO L=l,NC 
AB(I,J,K)=A(I,L)*B(L,J,K)+AB(I,J,K) 
mDO 

ENDDO 
ENDDO 

ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE TRANSPOSE 

* 
* 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE TRANSPOSE(M,N,A,AT) 
THIS SUBROUTINE FINDS THE TRANSPOSE OF THE M BY N C 

C MATRIXA 
DIMENS ION A( M ,N) , AT(N ,M) 
DO 1=1w 

DO J=l,N 

ENDDO 
AT(J,I)=A(I,J) 

ENDDO 
RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE MATRIX-MULT * 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE MATRIX - MULT(IA,J,T,K,L,F,TF) 
THlS SUBROUTINE MULTIPLIES A IA BY J MATRIX WITH A C 

C KBYLMATRIXF 
DIMENSION T( I A, J) ,F( K,L),TF(IA ,L) 
INTEGER Q 
DO M=l,IA 

DO N=l,L 
TF(M,N)=O.O 
DO Q=l,K 

ENDDO 
TF(M,N)=T(M,Q>*F(Q~)+~(M,N) 

ENDDO 
ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE N"-DOT-" * 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE NNN-DOT-NN(M,N,L,LL,A,B,A-DOT - B) 
THlS SUBROUTINE MULTIPLIES A LL BY M BY N ARRAY A C 

C WITH A N  BY M MATRIX B 
DIMENSION A (LL,M,N) ,B (N,M) ,A-DOT-B (LL,M ,M) 
Do  I=lN 

DO J=lM 
A - DOT - B(L,I,J)=O. 
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DO K=l,N 

ENDDO 
A - DOT - B(L,I,J)=A(L,I,K)*B(K,J)+A - DOT - B(L,I,J) 

ENDDO 
ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE NN-DOT - NNN * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE NN - DOT - NNN(M,N,L,LL,A,B,A - DOT - B) 
THIS SUBROUTINE MULTIPLIES A M BY N MATFUX A WITH A C 

C LL BY N BY N ARRAY B 
DIMENSION A( M,N) ,B (LL,N ,N) ,A - DOT - B (LL,M,N) 
DO I=l,M 

DO J=l,N 
A - DOT - B(L,I,J)=O. 
DO K=l,N 

A - DOT - B(L,I,J)=A(I,K)*B(L,K,J)+A - DOT-B(L,I,J) 
ENDDO 

ENDDO 
ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE ADDT * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE ADDT(L,M,N,A,B,A-B) 
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C 
C 

THIS SUBROUTINE ADDS ALBY MBY M ARRAY A T 0  A 
L BY M BY M ARRAY B 

DIMENSION A(L,M,M),B (L,M,M),A-B (L,M ,M) 
DO I = l N  

DO J = l , M  

ENDDO 
A - B(N,I,J)=A(N,I,J)+B(N,I,J) 

ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE SUBT * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE SUBT(M,N,A,B,A-B) 
THIS SUBROUTINE SUBSTRACT A N BY M BY M ARRAY A C 

C FROM A N  BY M BY MARRAY B 
DIMENSION A( 6,6,6),B (6,6,6),A-B (6,6,6) 
DO I=l,M 

DO J=l,M 

ENDDO 
A_B(N,IJ>=A(N,I,J>-B(N,I,J) 

ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* 
* 

SUBROUTINE ROT-MATRIX 

* 
* 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTDE ROT-MATRIX(N,R) 
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C 
C FRAME 

THIS SUBROUTINE ROTATES THE LEG FRAMES TO THE BASE 

DIMENSION R(3,3) 
DELTA=5. 
IF(N .EQ. 1) A L = O .  
IF(N .EQ. 2) AL=DELTA 
IF(N .EQ. 3) AL=120. 
IF(N .EQ. 4) AL=120.+DELTA 
IF(N .EQ. 5 )  AL=240. 
IF(N .EQ. 6)  AL=240.+DELTA 
R( 1 , 1)= 1. 
R(2,2)=COSD(AL) 
R( 2,3)=-SIND(AL) 
R(3,2)=-R(2,3) 
R(3,3)=R( 2,2) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINETRANSF P G * - -  
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINETRANSF - -  P G 
THIS SUBROUTINE ROTATES THE PLATFORM FRAME TO THE C 

C BASE FRAME 
C O M M O N A "  - -  P G/R(3,3) 
COMMON/ORIEN/X 1 ,Y 1 ,Z1 ,X 12,Y 12,Z 12 
R( 1 ,1)=X 12 
R( 1,2)=Y 1*Z12-Z1 *Y 12 
R( 1,3)=X 1 
R(2,1)=Y 12 
R(2,2)=Z 1 *X 12-X 1 *Z 12 
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R(2,3)=Y 1 
R(3,1)=Z12 
R(3,2)=X 1 *Y 12-Y 1*X12 
R(3,3)=Z1 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* 
* 

SUBROUTINE CALQDOT * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CALQDOT(UDOT,QDOT) 
THIS SUBROUTINE COMPUTES THE DESIRED ACTUATORS C 

C VELOCITY 
COMMON/ ARR-G qu/Gq_u (6,6) 
DLMENSION UDOT(6,1),QDOT(6,1) 
CALL MATRIX-MULT(6,6,Gq-u,6,1 ,UDOT,QDOT) 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 

* 
* 

SUBROUTINE CAL_QDDOT * 
* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE CAL_qDDoT(UDOT,UDDOT,QDDOT) 
THIS SUBROUTINE COMPUTES THE DESIRED ACTUATORS 

COMMON/ARR_G~u/G~u(  6,6) 
COMMON/ ARR-Hq-uu/Hq_uu( 6,6,6) 
DIMENSION UDOT(6,1),UDDOT(6,1),QDDOT(6,1),XX(6, l),  

CALL MATRIX-MULT(6,6,Gq-u,6,1 ,UDDOT,XX) 

C 
C ACCELERATION 

+ TUDOT( 176),YY(6,1,6),ZZ(6, 1,1) 
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CALL TRANSPOSE(6,l ,UDOT,TUDOT) 
DO I=1,6 

CALL NN-DOT-NNN( ~,~,I ,~,TUDOT,HQ_U~,YY) 
CALL NNN-DOT-NN( 1 ,6,1,6,YY ,UDOT,ZZ) 
QDDOT(I,l)=XX(I, l)+ZZ(I, 1,l) 

ENDDO 
RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* 
* 

* 
* 
* 

SUBROUTINE GEN-FORCES 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE GEN-FORCES(QDOT,QDDOT) 
THIS SUBROUTINE COMFUTES THE REQUIRED ACTUATOR 
FORCES TO CAUSE THE DESIRED PLATFORM MOTIONS 

C 
C 

COMMON/Iqq/STAR - Iqq(6,6) 

COMMON/Pqqq/PSTAR_qqq(6,6,6) 
DMENSION QDOT(6,1),TQDOT( 1,6),QDDOT(6, 1),XX(6, l) ,  

+ TQ(6,1),YY(6,1,6),ZZ(6,1,1) 
CALL TRANSPOSE(6,l ,QDOT,TQDOT) 
CALL MATRIX - MULT(6,6,STAR - Iqq,6,1 ,QDDOT,XX) 
DO I=1,6 

CALL NN - DOT-N"( 1 ,6,Iy6,TQDOT,P-ST~-qqq,YY) 
CALL NNN-DOT-NN( 1 ,6,1,6,YY,QDOT,ZZ) 
Tq(I,l)=ZZ(I, 1 ,l)+XX(I,l) 

ENDDO 
WRITE(1,88) 
DO I=1,6 

ENDDO 
FORMAT(/,X,'LINK', 1 OX,'ACC. TERMS', 1 OX,'VEL. 

WRITE( 1,99)I,XX(I,1),ZZ(I,1,1),TQ(IY 1) 

88 
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+ TERMS', 10X,'Tq') 
99 FORMAT(3X,I 1,8X,E 15.8,5X,E 15.8,4X,E 15.8) 

RETURN 
END 



. 

APPENDIX C 

INPUT DATA FOR THE SIMULATION 
PROGRAM IN APPENDIX B 

1, 0, o,o, 1, 0, 0 

1, 0, 0, 0, 0.5, -0.866, 60 

2, 3 

10, 200, 175, 0.06, 3, 3 

2 

20 

200 



APPENDIX D 

SUBROUTINE FOR CLASS P=2, 
CONSTANT ACCELERATION 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 

* 
* * SUBROUTINE NEXT-MOTION * 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  

SUBROUTINE NEXT_MOTION(TMAX,~,XUi ,XUf ,THETAi ,  
+ THETAf,XU,THETA,V, W ,ACC, 
+ AL,Y 12,212) 

C 
C 

THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS 
USING CLASS P=2, CONSTANT ACCELERATION 

AUG=(PTIME-TMAX/2) 
T=TMAX**2 
IF (AUG .LT. 0)THEN 
AUG=O. 
DEL=O. 

DEL= 1. 
ELSE 

ENDIF 
X=XUf-XUi 

XU=XUi+2.*X*(PTIME**2-2.*AUG**2)/T 

THETA=THETAi+2.*TTA*(PTIME**2-2.*AUG**2)fl 

TT'A=TJ%TAf-THETAi 

V=4.*X*(PTIME-2.*AUG)/T 
ACC=4.*X*( 1.-2.*DEL)/T 

W=4.*TTA*(PTIME-2.*AUG)/T 
AL=4.*TTA*( 1 .-2.*DEL)/T 
Y 12=COS(THETA) 
Z 1 2=SIN( THETA) 
THETA=THETA* 180J3.1415926 
RETURN 
END 

20 1 



APPENDIX E 

SUBROUTINE FOR CLASS P=4, 
4-5-6-7 POLYNOMIAL 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* SUBROUTINE NEXT-MOTION * 

SUBROUTINE NEXT-MOTION(TMAX,PTIME,XUi,XUf,THETAi, 
+ THETAf,XU,THETA,V,W,ACC, 

THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS 

X= XU f - XUi 
T=PTIME/TMAX 
XU=XUi+X*(35.*(T**4)-84.*(T**5)+70.*(T**6)-20.*(T**7)) 

+ AL,Y 12,212) 
C 
C USING CLASS P=4,4-5-6-7 POLYNOMIAL 

l'TA=THETAf-THETAi 

V=(X/TMAX)*( 14O.*(T**3)-420.*(T*"4)+420.*(T**5)- 14O.*(T**6)) 
ACC=(XmAX**2)*(420.*(T**2)- 168O.*(T**3)+2 10O.*(T**4)- 

840. *(T**5)) 

2O.*(T**7)) 
THETA=THETAi+lTA*(35.*(T**4)-84. *(T**5)+70.*(T**6)- 

W=(TTA/TMAX)*( 140. *(T**3)-420. *(T**4)+420. *(T**5)- 140. *(T**6)) 
AL=('ITA/TMAX**2)*(42O.*(T**2)- 168O.*(T**3)+2 10O.*(T**4)- 

840. *(T**5)) 
Y 12=COS(THETA) 
Z12=SIN(THETA) 
THETA=THETA* 180J3.1415926 
RETURN 
END 

202 



APPENDIX F 
SUBROUTINE FOR CLASS P=4, 

THIRD DERIVATIVE TRAPEZOIDAL 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * 
* * 

* 
* SUBROUTINE NEXT-MOTION * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

+ 
+ 

C 
C 

+ 
+ 
+ 
+ 

SUBROUTINE NEXT-MOTION(TMAX,PTIME,XUi,XUf,THETAi, 
THETA f,XU,THETA,V , W ,ACC,AL, 
Y 12,Z12,T,Al,A2,A3) 

THIS SUBROUTINE DETERMINES THE PLATFORM MOTIONS 

DMENSION T(O:8),AUG(O:7),Y(2,4),A 1 (2),A2(2),A3(2) 
USING CLASS P=4, TI-LIRD DERIVATIVE TRAPEZOIDAL 

DO II=1,2 
DO 1=4,2,-1 

DO J=1,8 
AUG(J-l)=PTIME-T(J-l) 
IF (AUG(J-1) .LT. O.)AUG(J-1)=O. 
AUG(J- 1 )= AUG( J- 1 )**I 

ENDDO 
FACT=I 
DO K=I-1,1,-1 

ENDDO 
Y (II,I)=(A 1 (II)/FACT)*( (AUG(0)-AUG( l))/(T( 1 )-T(0))- 

( AUG( 2)-AUG( 3))/(T(3)-T(2)))+(A2( II)/FACT)* 
((AUG(2)-AUG(3))/(T(3)-T(2))-(AUG(4)-AUG(5))/ 
(T(5)-T(4)))+(A3( II)/FACT)*( (AUG(4)-AUG(5)) 
/(T(5)-T(4))-(AUG(6)-AUG(7))/(TMAX-T(6))) 

FACT=FACT*K 

ENDDO 
ENDDO 
XU=XUi+Y( 1,4) 
V=Y (1,3) 
ACC=Y(1,2) 
THETA=THETAi+Y (2,4) 
W=Y(2,3) 

Y 12=COS(THETA) 
Z12=SIN(THETA) 
THETA=THETA* 180~3.1415926 
RETURN 
END 

AL=Y(2,2) 

203 



APPENDIX G 

SUBROUTINE TO DETERMINE THE 
CONSTANTS Al ,  A2 AND A3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * 
* SUBROUTINE CAL-AlA2A3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
* * 

+ 
C 
C 
C 

+ 
+ 

SUBROUTINE CAL-A 1A2A3(T7A 1 ,A2,A3,XUi,XUf7THETAi, 
THETAn 

THIS SUBROUTINE DETERMINES TkE THREE CONSTANTS A1,A2 
AND A3 FOR THE CLASS P=4, TJ3IR.D DERIVATIVE 
TRAPEZOIDAL 

DIMENSION T(0: 8),A 1 (2),A2(2),A3(2>,TT(3,3),~(3,3),Z(3),A(3) 
DO I=1,3 

DO J= 1,3 
Tl'(I,J)=((((T(7)-T(2*J-2))**(1+ l))-(T(7)-T(2*J- l))**(I+ 1)) 

/(T(2*J- l)-T(2*J-2>))-((((T(7)-T(2*J))**(I+ 1))- 
(T(7)-T(2* J+ 1 ))**(I+ 1))/(T(2*J+ 1)-T(2* J))) 

ENDDO 
mDO 
DO K=1,2 
IF (K .EQ. 1)THEN 

ELSE 

ENDIF 
Z(3)=24.*Y 

Y=XUf-XUi 

Y=THETAf-THETAi 

C Z L  MATRIX INV(3,?T7?TI) 
CALL MATRIX-MULT(3,3,l'TI73, 1 ,&A) - 
A 1 (K)=A( 1)  
A2(K)=A(2) 
A3(K)=A(3) 
WRITE( 1 ,*)'A 1 =',A 1 (K),'A2=',A2(K),'A3=',A3(K) 

ENDDO 
RETURN 
END 
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